Secure Identity-Based Encryption in the Quantum Random Oracle Model

  • Mark Zhandry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)


We give the first proof of security for an identity-based encryption scheme in the quantum random oracle model. This is the first proof of security for any scheme in this model that requires no additional assumptions. Our techniques are quite general and we use them to obtain security proofs for two random oracle hierarchical identity-based encryption schemes and a random oracle signature scheme, all of which have previously resisted quantum security proofs, even using additional assumptions. We also explain how to remove the extra assumptions from prior quantum random oracle model proofs. We accomplish these results by developing new tools for arguing that quantum algorithms cannot distinguish between two oracle distributions. Using a particular class of oracle distributions, so called semi-constant distributions, we argue that the aforementioned cryptosystems are secure against quantum adversaries.


Quantum Random oracle IBE Signatures 


  1. [Aar09]
    Aaronson, S.: Quantum Copy-Protection and Quantum Money. In: Proceedings of the 24th Annual IEEE Conference on Computaitonal Complexity, CCC (2009)Google Scholar
  2. [ABB10]
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [ABI86]
    Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem. Journal of Algorithms 7(4), 567–583 (1986)Google Scholar
  4. [BBBV97]
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and Weaknesses of Quantum Computing. SIAM Journal on Computing 26, 1510–1523 (1997)Google Scholar
  5. [BDF+11]
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random Oracles in a Quantum World. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [BF01]
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [BF11]
    Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. [BHK+11]
    Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.: Merkle Puzzles in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 391–410. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. [BHT97]
    Brassard, G., Høyer, P., Tapp, A.: Quantum Algorithm for the Collision Problem. ACM SIGACT News (Cryptology Column) 28, 14–19 (1997)Google Scholar
  10. [BR93]
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security (CCS), pp. 62–73. ACM (November 1993)Google Scholar
  11. [BS08]
    Brassard, G., Salvail, L.: Quantum Merkle Puzzles. In: Second International Conference on Quantum, Nano and Micro Technologies (ICQNM 2008), pp. 76–79 (February 2008)Google Scholar
  12. [CHKP10]
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. [DS41]
    Duffin, R.J., Schaffer, A.C.: A Refinement of an Inequality of the Brothers Markoff. Trans. Amer. Math. Soc. 44(3), 289–297 (1941)Google Scholar
  14. [FO99]
    Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. [FS87]
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  16. [GKV10]
    Dov Gordon, S., Katz, J., Vaikuntanathan, V.: A Group Signature Scheme from Lattice Assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010)Google Scholar
  17. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System Sciences, 270–299 (1984)Google Scholar
  18. [GMR88]
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281–308 (1988)Google Scholar
  19. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), p. 197 (2008)Google Scholar
  20. [HSS11]
    Hallgren, S., Smith, A., Song, F.: Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. [Jof74]
    Joffe, A.: On a Set of Almost Deterministic k-Independent Random Variables. The Annals of Probability 2(1), 161–162 (1974)Google Scholar
  22. [KM93]
    Koller, D., Megiddo, N.: Constructing Small Sample Spaces Satisfying Given Constraints. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 268–277. ACM (1993)Google Scholar
  23. [KM94]
    Karloff, H., Mansour, Y.: On Construction of k-Wise Independent Random Variables. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC), vol. 17, pp. 564–573 (1994)Google Scholar
  24. [Lub85]
    Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing (STOC), pp. 1–10. ACM (1985)Google Scholar
  25. [MP11]
    Meyer, D., Pommersheim, J.: On the Uselessness of Quantum Queries. Theoretical Computer Science, 1–12 (March 2011)Google Scholar
  26. [NC00]
    Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. American Journal of Physics 70(5), 558 (2000)Google Scholar
  27. [Sho97]
    Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)Google Scholar
  28. [Unr10]
    Unruh, D.: Universally Composable Quantum Multi-Party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. [Zha12a]
    Zhandry, M.: Secure Identity-Based Encryption in the Quantum Random Oracle Model (February 2012); Full version available at the Cryptology ePrint Archives,
  30. [Zha12b]
    Zhandry, M.: How to Construct Quantum Random Functions (April 2012); Full version available at the Cryptology ePrint Archives,

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Mark Zhandry
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations