Advertisement

A New Approach to Practical Active-Secure Two-Party Computation

  • Jesper Buus Nielsen
  • Peter Sebastian Nordholt
  • Claudio Orlandi
  • Sai Sheshank Burra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

We propose a new approach to practical two-party computation secure against an active adversary. All prior practical protocols were based on Yao’s garbled circuits. We use an OT-based approach and get efficiency via OT extension in the random oracle model. To get a practical protocol we introduce a number of novel techniques for relating the outputs and inputs of OTs in a larger construction.

We also report on an implementation of this approach, that shows that our protocol is more efficient than any previous one: For big enough circuits, we can evaluate more than 20000 Boolean gates per second. As an example, evaluating one oblivious AES encryption (\(\sim 34000\) gates) takes 64 seconds, but when repeating the task 27 times it only takes less than 3 seconds per instance.

Keywords

Hash Function Random Oracle Security Parameter Full Version Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: ICS, pp. 45–60 (2011)Google Scholar
  3. 3.
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: CCS, pp. 257–266 (2008)Google Scholar
  4. 4.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  6. 6.
    Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure Multi-Party Computation of Boolean Circuits with Applications to Privacy in On-Line Marketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the Security of the “Free-XOR” Technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Private Multiparty Computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Damgård, I., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 367–374. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudo-random Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Garay, J.A., MacKenzie, P., Yang, K.: Efficient and Universally Composable Committed Oblivious Transfer and Applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 297–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press (2004), http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  15. 15.
    Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-Combiners via Secure Computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Tasty: tool for automating secure two-party computations. In: CCS, pp. 451–462 (2010)Google Scholar
  17. 17.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)Google Scholar
  18. 18.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC, pp. 433–442 (2008)Google Scholar
  20. 20.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No Honest Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Jakobsen, T.P., Makkes, M.X., Nielsen, J.D.: Efficient Implementation of the Orlandi Protocol. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 255–272. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Lindell, Y., Oxman, E., Pinkas, B.: The IPS Compiler: Optimizations, Variants and Concrete Efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Lindell, Y., Pinkas, B., Smart, N.P.: Implementing Two-Party Computation Efficiently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Malka, L., Katz, J.: VMCrypt - modular software architecture for scalable secure computation. Cryptology ePrint Archive, Report 2010/584 (2010), http://eprint.iacr.org/
  28. 28.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security Symposium, pp. 287–302 (2004)Google Scholar
  29. 29.
    Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robustness almost for free. Cryptology ePrint Archive, Report 2007/215 (2007), http://eprint.iacr.org/
  30. 30.
    Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Jesper Buus Nielsen
    • 1
  • Peter Sebastian Nordholt
    • 1
  • Claudio Orlandi
    • 2
  • Sai Sheshank Burra
    • 3
  1. 1.Aarhus UniversityAarhusDenmark
  2. 2.Bar-Ilan UniversityRamat GanIsrael
  3. 3.Indian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations