Advertisement

An Enciphering Scheme Based on a Card Shuffle

  • Viet Tung Hoang
  • Ben Morris
  • Phillip Rogaway
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

We introduce the swap-or-not shuffle and show that the technique gives rise to a new method to convert a pseudorandom function (PRF) into a pseudorandom permutation (PRP) (or, alternatively, to directly build a confusion/diffusion blockcipher). We then prove that swap-or-not has excellent quantitative security bounds, giving a Luby-Rackoff type result that ensures security (assuming an ideal round function) to a number of adversarial queries that is nearly the size of the construction’s domain. Swap-or-not provides a direct solution for building a small-domain cipher and achieving format-preserving encryption, yielding the best bounds known for a practical scheme for enciphering credit-card numbers. The analysis of swap-or-not is based on the theory of mixing times of Markov chains.

Keywords

Blockciphers Feistel network Luby-Rackoff Markov chain PRF-to-PRP conversion pseudorandom permutations swap-or-not 

References

  1. 1.
    Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-Preserving Encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-preserving encryption (February 2010) (submission to NIST, available from their website)Google Scholar
  3. 3.
    Black, J., Rogaway, P.: Ciphers with Arbitrary Finite Domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal (submission to NIST, available from their website)Google Scholar
  5. 5.
    Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data warehouse security. In: 20th National Information Systems Security Conference Proceedings (NISSC), pp. 141–149 (1997)Google Scholar
  6. 6.
    Coron, J.-S., Patarin, J., Seurin, Y.: The Random Oracle Model and the Ideal Cipher Model Are Equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Diaconis, P., Fill, J.: Strong stationary times via a new form of duality. Annals of Probability 18(4), 1483–1522 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    FIPS 74. U.S. National Bureau of Standards (U.S.). Guidelines for implementing and using the NBS Data Encryption Standard. U.S. Dept. of Commerce (1981)Google Scholar
  9. 9.
    Granboulan, L., Pornin, T.: Perfect Block Ciphers with Small Blocks. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Halevi, S.: EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle model and the ideal cipher model, revisited. In: STOC 2011, pp. 89–98 (2011); Full version at arXiv:1011.1264
  13. 13.
    Hoang, V.T., Rogaway, P.: On Generalized Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. on Computing 17(2), 373–386 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability Amplification. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Morris, B., Rogaway, P., Stegers, T.: How to Encipher Messages on a Small Domain: Deterministic Encryption and the Thorp Shuffle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Naor, M., Reingold, O.: On the construction of pseudo-random permutations: Luby-Rackoff revisited. J. of Cryptology 12(1), 29–66 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Naor, M., Reingold, O.: A pseudo-random encryption mode (1997) (manuscript)Google Scholar
  20. 20.
    Patarin, J.: Pseudorandom Permutations Based on the DES Scheme. In: Charpin, P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Patarin, J.: Luby-Rackoff: 7 Rounds Are Enough for \(2^{n(1-\varepsilon )}\) Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non equalities. Cryptology ePrint report 2010/293 (2010)Google Scholar
  23. 23.
    Rudich, S.: Limits on the provable consequences of one-way functions. Ph.D. Thesis, UC Berkeley (1989)Google Scholar
  24. 24.
    Stefanov, E., Shi, E.: FastPRP: Fast pseudo-random permutations for small domains. Cryptology ePrint Report 2012/254 (2012)Google Scholar
  25. 25.
    Stütz, T., Uhl, A.: Efficient Format-Compliant Encryption of Regular Languages: Block-Based Cycle-Walking. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 81–92. Springer, Heidelberg (2010)Google Scholar
  26. 26.
    Thorp, E.: Nonrandom shuffling with applications to the game of Faro. Journal of the American Statistical Association 68, 842–847 (1973)Google Scholar
  27. 27.
    Wen, J., Severa, M., Zeng, W., Luttrell, M., Jin, W.: Circuits and systems for video technology. IEEE Transactions on Circuits & Systems for Video Technology 12(6), 545–557 (2002)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Viet Tung Hoang
    • 1
  • Ben Morris
    • 2
  • Phillip Rogaway
    • 1
  1. 1.Dept. of Computer ScienceUniversity of CaliforniaDavisUSA
  2. 2.Dept. of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations