Dealing with Data at Various Spatial Scales and Supports: An Application on Traffic Noise and Air Pollution Effects on Housing Prices with Multilevel Models

  • Julie Le Gallo
  • Coro Chasco
Part of the Advances in Spatial Science book series (ADVSPATIAL)


In empirical studies dealing with spatial data, researchers are frequently confronted with data available at different spatial scales. For instance, hedonic models on housing prices usually combine individual data pertaining to the price and structural characteristics of the dwelling and socio-economic neighbourhood characteristics that are available at some upper administrative levels. Another frequent issue is the change of support problem or misaligned regression problem (Gotway and Young 2002; Banerjee et al. 2004) when there is a spatial mismatch between the spatial supports of the variables. For instance, the measurement of air quality is based on regular sampling at a few stations in an area whereas socio-economic data are available for aggregate administrative.


Housing Price Census Tract Multilevel Model Floor Area Noise Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alker HR (1969) A typology of fallacies. In: Dogan M, Rokkan S (eds) Quantitative ecological analysis in the social sciences. M.I.T. Press, CambridgeMAGoogle Scholar
  2. Anselin L, Lozano-Gracia N (2008) Errors in variables and spatial effects in hedonic house price models of ambient air quality. Empirical Economics, Springer 34(1):5–34Google Scholar
  3. Arbia G (1989) Statistical effect of data transformations: a proposed general framework. In: Goodchild M, Gopal S (eds) The accuracy of spatial data bases. Taylor and Francis, London, pp 249–259Google Scholar
  4. Ayuntamiento de Madrid (2009a) Plan de Acción del Área de Gobierno de Urbanismo y Vivienda para la Revitalización del Centro Urbano 2008–2011, Área de Gobierno de Urbanismo y Vivienda, MadridGoogle Scholar
  5. Ayuntamiento de Madrid (2009b) Anuario Estadístico Municipal 2009, MadridGoogle Scholar
  6. Ayuntamiento de Madrid (2010) Contabilidad Municipal de la Ciudad de Madrid. Base 2002. Serie 2000–2008(1ae). Dirección General de Estadística, MadridGoogle Scholar
  7. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca RatonGoogle Scholar
  8. Banfi S, Filippini M, Horehájová A (2007) Hedonic price functions for Zurich and Lugano with special focus on electrosmog. CEPE working paper no. 57Google Scholar
  9. Baranzini A, Ramírez JV (2005) Paying for quietness: the impact of noise on Geneva rents. Urban Stud 42:633–646CrossRefGoogle Scholar
  10. Berezansky B, Portnov BA, Barzilai B (2010) Objective vs. perceived air pollution as a factor of housing pricing: a case study of the greater haifa metropolitan area. J Real Estate Lit 18:99–122Google Scholar
  11. Beron KJ, Murdoch JC, Thayer MA (1999) Hierarchical linear models with application to air pollution in the South Coast Air Basin. Am J Agric Econ 81:1123–1127CrossRefGoogle Scholar
  12. Bickel P, Schmid S, Tervonen J, Hämekoski K, Otterström T, Anton P, Enei R, Leone G. van Donselaar P, Carmigchelt H (1999) Environmental marginal cost case studies. Working funded by 5th framework RTD programme. IER, University of Stuttgart, Stuttgart. Available from
  13. Bonin O (2009) Urban location and multi-level hedonic models for the Ile-de-France region. In: Paper presented at ISA international housing conference, Glasgow, 1–4 Sept 2009. Available from
  14. Boyle MA, Kiel KA (2001) A survey of house price hedonic studies of the impact of environmental externalities. J Real Estate Lit 9:117–144Google Scholar
  15. Brody SD, Peck BM, Highfield WE (2004) Examining localized patterns of air quality perception in Texas: a spatial and statistical analysis. Risk Anal 24:1561–1574CrossRefGoogle Scholar
  16. Chasco C, López A (2009) Multilevel models: an application to the beta-convergence model. Région et Développement 30:35–58Google Scholar
  17. Cheshire P, Sheppard S (1998) Estimating the demand for housing, land, and neighbourhood characteristics. Oxford Bull Econ Stat 60:357–382CrossRefGoogle Scholar
  18. Cummins R (2000) Personal income and subjective well-being: a review. J Happ Stud 1:133–158CrossRefGoogle Scholar
  19. Delfim L, Martins I (2007) Monitoring urban quality of life: the Porto experience. Soc Indic Res 80:411–425CrossRefGoogle Scholar
  20. Delucchi MA, Murphy JJ, McCubbin DR (2002) The health and visibility cost of air pollution: a comparison of estimation methods. J Environ Manag 64:139–152CrossRefGoogle Scholar
  21. Djurdjevic D, Eugster C, Haase R (2008) Estimation of hedonic models using a multilevel approach: an application to the Swiss rental market. Swiss J Econ Stat 144:679–701Google Scholar
  22. Falzone KL (1999) Airport noise pollution: is there a solution in sight? Boston Coll Environ Aff Law Rev 26:769–807Google Scholar
  23. Fontes GG, Simões RF, Hermeto Camilo De Oliveira AM (2009) Urban attributes and wage disparities in Brazil: a multilevel hierarchical model. Reg Stud 44:595–607CrossRefGoogle Scholar
  24. Gelfand AE, Banerjee S, Sirmans CF, Tud Y, Ongd SE (2007) Multilevel modelling using spatial processes: application to the Singapore housing market. Comput Stat Data Anal 51:3567–3579CrossRefGoogle Scholar
  25. Goldstein H (2003) Multilevel statistical models. Arnold, LondonGoogle Scholar
  26. Gotway CA, Young LJ (2002) Combining incompatible spatial data. J Am Stat Assoc 97–458:632–648CrossRefGoogle Scholar
  27. Hartley PR, Hendrix ME, Osherson D (2005) Real estate values and air pollution: measured levels and subjective expectations. Discussion paper, Rice UniversityGoogle Scholar
  28. Hox JJ (1995) Applied multilevel analysis. TT-Publikaties, AmsterdamGoogle Scholar
  29. Hui ECM, Chau CK, Pun L, Law MY (2008) Measuring the neighbouring and environmental effects on residential property value: using spatial weighting matrix. Build Environ 42:2333–2343CrossRefGoogle Scholar
  30. Instituto Nacional de Estadística, INE (2008) Callejero del Censo Electoral 2007. MadridGoogle Scholar
  31. Instituto Nacional de Estadística, INE (2010) Padrón de Habitantes. MadridGoogle Scholar
  32. Jones K, Bullen N (1994) Contextual models of urban house prices: a comparison of fixed- and random-coefficient models developed by expansion. Econ Geogr 70:252–272CrossRefGoogle Scholar
  33. Khattab N (2007) Ethnic and regional determinants of unemployment in the Israeli labour market: a multilevel model. Reg Stud 40:93–105CrossRefGoogle Scholar
  34. Kulu H, Billari F (2010) Multilevel analysis of internal migration in a transitional country: the case of Estonia. Reg Stud 26:243–255Google Scholar
  35. Leishman C (2009) Spatial change and the structure of urban housing sub-markets. Housing Stud 24:563–585CrossRefGoogle Scholar
  36. Li MM, Brown HJ (1980) Micro-neighbourhood externalities and hedonic housing prices. Land Econ 56:125–141CrossRefGoogle Scholar
  37. Miedema HME, Oudshoorn CGM (2001) Annoyance from transportation noise: relationships with exposure metrics DNL and DENL and their confidence interval. Environ Health Perspect 109:409–416CrossRefGoogle Scholar
  38. Mieszkowski P, Saper AM (1978) An estimate of the effects of airport noise on property values. J Urban Econ 5:425–440CrossRefGoogle Scholar
  39. Murti MN, Gulati SC, Banerjee A (2003) Hedonic property prices and valuation of benefits from reducing urban air pollution in India. Institute of Economic Growth, Delhi Discussion Papers 61Google Scholar
  40. Nelson JP (1979) Airport noise, location rent, and the market for residential amenities. J Environ Econ Manag 6:320–331CrossRefGoogle Scholar
  41. Nelson JP (2004) Meta-analysis of airport noise and hedonic property values. J Trans Econ Pol 38:1–28Google Scholar
  42. Nourse HO (1967) The effect of air pollution on house values. Land Econ 43:181–189CrossRefGoogle Scholar
  43. Orford S (2000) Modelling spatial structures in local housing market dynamics: a multilevel perspective. Urban Stud 37:1643–1671CrossRefGoogle Scholar
  44. Palmquist RB (2005) Property value models. In: Mäler KG, Vincent J (eds) Handbook of environmental economics, vol 2. North Holland, AmsterdamGoogle Scholar
  45. Raudenbush SW, Bryk AS (2002) Hierarchical linear models. Applications and data analysis methods, 2nd edn. Sage Publications, Thousand Oaks, USGoogle Scholar
  46. Ridker RG, Henning JA (1967) The determinants of residential property values with special reference to air-pollution. Rev Econ Stat 49:246–256CrossRefGoogle Scholar
  47. Smith VK, Huang J-C (1993) Hedonic models and air pollution: twenty-five years and counting. Environ Resour Econ 36:23–36Google Scholar
  48. Smith VK, Huang JC (1995) Can markets value air quality? A meta-analysis of hedonic property value models. J Polit Econ 103:209–227CrossRefGoogle Scholar
  49. Srholec M (2010) A multilevel approach to geography of innovation. Reg Stud 44:1207–1220CrossRefGoogle Scholar
  50. Ward C, Dale A (2006) Geographical variation in female labour force participation: an application of multilevel modelling. Reg Stud 26:243–255CrossRefGoogle Scholar
  51. Wardman M, Bristow AL (2004) Traffic related noise and air quality valuations: evidence from stated preference residential choice models. Transp Res Part D 9:1–27CrossRefGoogle Scholar
  52. Woodhouse G, Rasbash J, Goldstein H, Yang M (1996) Introduction to multi-level modelling. In: Woodhouse G (ed) Multi-level modelling applications: a guide for users of Mln. Institute of Education, University of London, US, pp 9–57Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CRESEUniversité de Franche-ComtéBesançon CedexFrance
  2. 2.Facultad de Economomicas, Departamento de Economía Aplicada (módulo 14)Universidad Autonoma de MadridMadridSpain

Personalised recommendations