Skip to main content

The Estimation of Urban Premium Wage Using Propensity Score Analysis: Some Considerations from the Spatial Perspective

  • 1061 Accesses

Part of the Advances in Spatial Science book series (ADVSPATIAL)

Abstract

The urban economics literature supports that thick labor markets pay higher wage levels than thin labor markets. Glaeser and Mare (2001) estimate the elasticity wage-city size larger than one million inhabitants around of 36 % higher than smaller areas, while Glaeser and Messenger (2010) identify a elasticity of 45 % for the case of skilled workers. This positive relation also exists within industries, but with an uneven impact (Elvery 2010). In spite of the extensive empirical evidence, the most of the applications have been focused on North American, European and Asian contexts. In this chapter we extend the analysis toward the Latin American case, where the ONU-Wider has strongly recommended focusing on “increasing inequalities partly as a consequence of the uneven impact of trade openness and globalization” (Kanbur et al. 2005). We use the Chilean case and provide a first estimation of wage differentials between thick and thin labor markets. Although the extension toward new contexts could be considered a contribution as itself, the particular scenario of Latin American realities must be discussed.

Keywords

  • Labor Market
  • Wage Differential
  • Metropolitan Region
  • Administrative Division
  • Wage Premium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31994-5_11
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-31994-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   199.00
Price excludes VAT (USA)
Map 11.1
Map 11.2
Network 11.1
Network 11.2
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4

Notes

  1. 1.

    Annual National Manufacturing Survey, Chile, 1997

  2. 2.

    The Chilean administrative division presents ifteen regions including a Metropolitan Region (MR).

  3. 3.

    This assumption has received several names in the literature: unconfoundness ( Rosenbaum and Rubin 1983), selection on observables (Barnow et al. 1980), conditional independence (Lechner 1999), and exogeneity (Imbens 2004).

  4. 4.

    The Stata® code is available upon autor request.

References

  • Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27:93–115

    CrossRef  Google Scholar 

  • Barnow BS, Cain GG, Goldberger AS (1980) Issues in the analysis of selectivity bias. In: Stromsdorfer EW, Farkas G (eds) Evaluation studies: review annual, vol 5. Sage Publication, Beverly Hills

    Google Scholar 

  • Berry C, Glaeser E (2005) The divergence of human capital levels across cities. NBER working papers 11617. National Bureau of Economic Research

    Google Scholar 

  • Bonacich P (1972) Factoring and weighing approaches to clique identification. J Math Sociol 2:113–120

    CrossRef  Google Scholar 

  • Boots B, Kanaroglou P (1988) Incorporating the effects of spatial structure in discrete choice models of migration. J Reg Sci 28:495–507

    CrossRef  Google Scholar 

  • Boots B, Tiefelsdorf M (2000) Global and local spatial autocorrelation in bounded regular tessellations. J Geogr Syst 2(4):319–348

    CrossRef  Google Scholar 

  • Boots BN (1984) Evaluating principal eigenvalues as measures of network structure. Geogr Anal 16:270–275

    CrossRef  Google Scholar 

  • Borgatti S (2005) Centrality and network flow. Soc Networks 27(1):55–71

    CrossRef  Google Scholar 

  • Castells M (2006) The theory of the network society. MPG Books, UK

    Google Scholar 

  • CASEN (2009) Encuesta de Caracterizacion Socio Economica Nacional

    Google Scholar 

  • Combes P, Duranton G, Gobillon L (2008) Spatial wage disparities: sorting matters! J Urban Econ 63:732–742

    CrossRef  Google Scholar 

  • Elvery J (2010) City size and skill intensity. Reg Sci Urban Econ 40(6):367–379

    CrossRef  Google Scholar 

  • Fruchterman T, Reingold E (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11):1129–1164

    CrossRef  Google Scholar 

  • Gastner M, Newman M (2004) Diffusion-based method for producing density-equalizing. PNAS 101(20):7499–7504

    CrossRef  Google Scholar 

  • Getis A, Griffith D (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140

    Google Scholar 

  • Glaeser E, Mare D (2001) Cities and skills. J Labor Econ 19(2):316–342

    CrossRef  Google Scholar 

  • Glaeser E, Resseger M (2009) The complementarity between cities and skills. NBER working papers 15103, National Bureau of Economic Research

    Google Scholar 

  • Green N (2007) Functional polycentricity: a formal definition in terms of social network analysis. Urban Stud 44:2077–2103. doi:10.1080/00420980701518941

    CrossRef  Google Scholar 

  • Heckman J (2005) Lessons from the technology of skill formation. NBER working papers 11142, National Bureau of Economic Research

    Google Scholar 

  • Holland P (1986) Statistics and causal inference. J Am Stat Assoc 81:945–970

    CrossRef  Google Scholar 

  • Iacus S, King G, Porro G (2008) Matching for causal inference without balance checking. UNIMI - research papers in economics, business, and statistics unimi-1073, UniversitádegliStudi di Milano

    Google Scholar 

  • Iacus SM, King G, Porro G (2011) Multivariate matching methods that are monotonic imbalance bounding. J Am Stat Assoc 106(493):345–361. doi:10.1198/jasa.2011.tm09599

    CrossRef  Google Scholar 

  • Imbens G (2004) Nonparametric estimation of average treatment effects under exogeneity: a review. Rev Econ Stat 86(1):4–29

    CrossRef  Google Scholar 

  • Kanbur R, Venables A (2005) Spatial inequality and development overview of unu-wider project. http://www.arts.cornell.edu/poverty/kanbur/WIDERProjectOverview.pdf

  • Kanbur R, López-Calva LF, Venables AJ (2005) Symposium on spatial inequality in Latin America. Cuadernos de economía 42(125):133–136

    CrossRef  Google Scholar 

  • Lechner M (1999) Nonparametric bounds on employment and income effects of continuous vocational training in East Germany. Econ J 2(1):1–28

    Google Scholar 

  • Marshall A (1920) Principles of economics. MacMillan, London

    Google Scholar 

  • Mion G, Naticchioni P (2009) The spatial sorting and matching of skills and firms. Can J Econ 42(1):28–55

    CrossRef  Google Scholar 

  • Puga D (1998) Urbanisation patterns: European vs. less developed countries. J Reg Sci 38:231–252

    CrossRef  Google Scholar 

  • Puga D (1999) The rise and fall of regional inequalities. Eur Econ Rev 43(2):303–334

    CrossRef  Google Scholar 

  • Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41–55

    CrossRef  Google Scholar 

  • Rosenthal S, Strange W (2004) Evidence on the nature and sources of agglomeration economies. In: Henderson J, Thisse J (eds) Handbook of regional and urban economics. Elsevier, Amsterdam, pp 2120–2171

    Google Scholar 

  • Rubin DB (1986) Which ifs have causal answers. J Am Stat Assoc 81:961–962

    Google Scholar 

  • Venables A (2005) Spatial disparities in developing countries: cities, regions and international trade. Int Econ Rev 5:3–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Paredes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paredes, D., Lufin, M., Aroca, P. (2012). The Estimation of Urban Premium Wage Using Propensity Score Analysis: Some Considerations from the Spatial Perspective. In: Fernández Vázquez, E., Rubiera Morollón, F. (eds) Defining the Spatial Scale in Modern Regional Analysis. Advances in Spatial Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31994-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31994-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31993-8

  • Online ISBN: 978-3-642-31994-5

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)