Advertisement

IPAnema: A family of Cable-Driven Parallel Robots for Industrial Applications

  • Andreas Pott
  • Hendrick Mütherich
  • Werner Kraus
  • Valentine Schmidt
  • Philipp Miermeister
  • Alexander Verl
Chapter
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 12)

Abstract

Nowadays there are very little robot systems in operation in the field of medium to large-scale handling and assembly mostly due to lack of repetitive processes or shortcomings in programming and configuring such robots. In this paper we introduce a family of cable-driven parallel robot called IPAnema that are designed for industrial processes. We address the system architecture, key components such as winches and controller, as well as design tools. Furthermore, some experimental data from the evaluation are presented to illustrate the performance of cable robots.

Keywords

Mobile Platform Servo Motor Assembly Operation Cable Length Manufacturing Execution System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Fraunhofer-Gesellschaft Internal Programs under Grant No. WISA 823 244. Furthermore, the research leading to these results received founding for the European Community’s Seventh Framework Program under grant agreement number NMP2-SL-2011-285404-CableBot.

References

  1. 1.
    Albus, J.S., Bostelman, R.V., Dagalakis, N.G.: The nist robocrane. J. Res. Nat. Inst. Stand. Technol. 97(3), 373–385 (1992)CrossRefGoogle Scholar
  2. 2.
    Aref, M.M., Taghirad, H.D., Barissi, S.: Optimal design of dexterous cable driven parallel manipulators. Int. J. Robotics 1, 29–47 (2009) Google Scholar
  3. 3.
    Baoyan, D., Qiu, Y-Y., Fushun, Z., Zi, B.: Analysis and experiment of the feed cable-suspended structure for super antenna. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2008, pp. 329–334 (2008).Google Scholar
  4. 4.
    Bruckmann, T.: Auslegung und Betrieb redundanter paralleler Seilroboter. Universität Duisburg-Essen (2010).Google Scholar
  5. 5.
    Dagalakis, N.G., Albus, J.S., Wang, B.-L., Unger, J., Lee, J.D.: Stiffness study of a parallel link robot crane for shipbuilding applications. ASME J. Mech. Des. 111(3), 183–193 (1989)Google Scholar
  6. 6.
    Fang, S.: Design, Modeling and Motion Control of Tendon-Based Parallel Manipulators. Fortschritt-Berichte VDI, Reihe 8, Nr. 1076. VDI Verlag, Düsseldorf (2005).Google Scholar
  7. 7.
    Gouttefarde, M., Merlet, J.P., Daney, D.: Wrench-feasible workspace of parallel cable-driven mechanisms. In: ICRA, pp. 1492–1497. Rome, Italy (2007).Google Scholar
  8. 8.
    Heyden, T.: Bahnregelung eines seilgeführten Handhabungssystems mit kinematisch unbestimmter Lastführung. Fortschritt-Berichte VDI, Reihe 8, Nr. 1100. VDI Verlag, Düsseldorf (2006).Google Scholar
  9. 9.
    Hiller, M., Fang, S., Mielczarek, S., Varhoeven, R., Franitza, D.: Design, analysis and realization of tendon-based parallel manipulators. Mech. Mach. Theor. 40(4), 429–445 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kawamura, S., Tanaka, W.S., Pandian, S.R.: Development of an ultrahigh speed robot falcon using wire drive system. In: IEEE International Conference on Robotics and Automation, pp. 1764–1850 (1995).Google Scholar
  11. 11.
    Lafourcade, P., Llibre, M., Reboulet, C.: Design of a parallel wire-driven manipulator for wind tunnels. In: Gosselin, C.M. Ebert-Uphoff, I. (eds.) Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec City and Canada (2002).Google Scholar
  12. 12.
    Lafourcade, P., Zheng, Y-Q., Liu, X.: Stiffness analysis of wire-driven parallel kinematic manipulators. In: Proceedings 11th World Congress on Theory of Machines and Mechanisms, IFToMM, Tianjin and China (2003).Google Scholar
  13. 13.
    Maeda, K., Tadokoro, S., Takamori, T., Hiller, M., Verhoeven, R.: On design of a redundant wire-driven parallel robot warp manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 895–900. Detroit and MI and USA (1999).Google Scholar
  14. 14.
    Maier, T.: Bahnsteuerung eines seilgeführten Handhabungssystems. Fortschritt-Berichte VDI, Reihe 8, Nr. 1047. VDI Verlag, Düsseldorf (2004).Google Scholar
  15. 15.
    Merlet, J.P.: Kinematics of the wire-driven parallel robot marionet using linear actuators. Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena and CA and USA, In (2008)Google Scholar
  16. 16.
    Miermeister, P., Pott, A., Verl, A.: Dynamic modeling and hardware-in-the-loop simulation for the parallel cable robot ipanema. In: ISR/Robotik 2010, Munich and Germany (2010).Google Scholar
  17. 17.
    Otis, M.J.-D., Comtois, S., Laurendeau, D., Gosselin, C.M.: Human safety algorithms for a parallel cable-driven haptic interface. Adv. Intell. Soft Comput. 83, 187–200 (2010)CrossRefGoogle Scholar
  18. 18.
    Otis, M.: J-D., Perreault, S., Dang, T-L. N., Lambert, P., Gouttefarde, M., Laurendeau, D., Gosselin, C.M.: Determination and management of cable interferences between two 6-dof foot platforms in a cable-driven locomotion interface. Man. Cybern. Syst. 39(3), 528–544 (2009)Google Scholar
  19. 19.
    Perreault, S., Cardou, P., Gosselin, C.M., Otis, M. J-D.: Geometric determination of the interference-free constant-orientation workspace of parallel cable-driven mechanisms. ASME J. Mech. Rob. 2(3) (2010).Google Scholar
  20. 20.
    Pott, A.: Forward kinematics and workspace determination of a wire robot for industrial applications. In: ARK, pp. 451–458, Springer, Baz-sur-Mer and France (2008).Google Scholar
  21. 21.
    Pott, A.: An algorithm for real-time forward kinematics of cable-driven parallel robots. In: 12th International Symposium on Advances in Robot Kinematics, Springer, Piran Portoroz and Slovenio (2010).Google Scholar
  22. 22.
    Pott, A., Bruckmann, T., Mikelsons, L.: Closed-form force distribution for parallel wire robots. In: Computational Kinematics, pp. 25–34, Springer, Duisburg and Germany (2009).Google Scholar
  23. 23.
    Pott, A., Meyer, C., Verl, A.: Large-scale assembly of solar power plants with parallel cable robots. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pp. 1–6 (2010).Google Scholar
  24. 24.
    Rauter, G., von Zitzewitz, J., Duschau-Wicke, A., Vallery, H., Riener, R.: A tendon-based parallel robot applied to motor learning in sports. In: Proceedings of the 2010 3rd IEEE RAS and EMBS, Tokyo and Japan (2010).Google Scholar
  25. 25.
    Surdilovic, D., Bernhardt, R.: String-man: a new wire robot for gait rehabilitation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2031–2036. New Orleans (2004).Google Scholar
  26. 26.
    Surdilovic, D., Jinyu, Z., Bernhardt, R.: String-man: Wire-robot technology for safe, flexible and human-friendly gait rehabilitation. In: IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 446–453 (2007).Google Scholar
  27. 27.
    Tadokoro, S., Verhoeven, R., Hiller, M., Takamori, T.: A portable parallel manipulator for search and rescue at large-scale urban earthquakes and an identification algorithm for the installation in unstructured environments. In: Proceedings of International Conference on Intelligent Robots and Systems IROS 1999, Kyongju and South Korea (1999).Google Scholar
  28. 28.
    Verhoeven, R.: Analysis of the Workspace of Tendon-based Stewart Platforms. PhD thesis, University of Duisburg-Essen, Duisburg (2004).Google Scholar
  29. 29.
    von Zitzewitz, J., Rauter, G., Steiner, R., Brunschweiler, A., Riener, R.: A versatile wire robot concept as a haptic interface for sport simulation. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Tokyo and Japan (2009).Google Scholar
  30. 30.
    von Zitzewitz, J., Rauter, G., Vallery, H., Morger, A., Riener, R.: Forward kinematics of redundantly actuated, tendon-based robots. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Pott
    • 1
  • Hendrick Mütherich
    • 1
  • Werner Kraus
    • 1
  • Valentine Schmidt
    • 1
  • Philipp Miermeister
    • 1
  • Alexander Verl
    • 1
  1. 1.Fraunhofer IPAStuttgartGermany

Personalised recommendations