Trajectory Tracking for a Three-Cable Suspension Manipulator by Nonlinear Feedforward and Linear Feedback Control

  • Christoph Woernle
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 12)


The kinematically indeterminate cable suspension manipulator Cablev moves a payload platform in space by three spatially arranged cables with independently controllable winches. As the position of the platform is not fully determined by the lengths of the cables, undesired sway motions of the payload platform may occur. To make the payload platform track prescribed translational and rotational reference trajectories in space, a two-stage control concept is presented. A nonlinear feedforward control that exploits the flatness property of the system generates control inputs for the undisturbed motion along reference trajectories. Sway motions caused by disturbances are actively damped by a linear feedback of measured state variables enabling an asymptotically stable tracking behaviour. Experimental results from the prototype system Cablev are shown.


Reference Trajectory Feedforward Control Cable Length Linear Feedback Control Cable Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alp, A., Agrawal, S.: Cable suspended robots: feedback controllers with positive inputs. Proceedings of the American Control Conference, Anchorage, AK, USA, In (2002)Google Scholar
  2. 2.
    Arai, T., Osumi, B.: Three wire suspension robot. Ind. Robot 19, 17–22 (1992)Google Scholar
  3. 3.
    Bruckmann, T., Hiller, M., Schramm, D.: An active suspension system for simulation of ship maneuvers in wind tunnels. In: Pisla, D., et al. (eds.) New Trends in Mechanism Science: Analysis and Design, pp. 529–544. Springer, Berlin (2010)Google Scholar
  4. 4.
    Dagalakis, N., Albus, J., Wang, B.L., Unger, J., Lee, J.: Stiffness study of a parallel link robot crane for shipbuilding applications. ASME J. Offshore Mech. Arct. Eng. 111, 183–193 (1991)CrossRefGoogle Scholar
  5. 5.
    Delaleau, E., Rudolph, J.: Control of flat systems by quasi-static feedback of generalized states. Int. J. Control 71, 745–765 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 51, 1327–1361 (1995)CrossRefGoogle Scholar
  7. 7.
    Heyden, T.: Bahnregelung eines seilgeführten Handhabungssystems mit kinematisch unbestimmter Lastführung. Fortschrittberichte VDI, Reihe 8, Band 1100. VDI-Verlag, Düsseldorf (2006).Google Scholar
  8. 8.
    Heyden, T., Woernle, C.: Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator. Multibody Syst. Dyn. 16, 155–177 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hiller, M., Fang, S., Mielczarek, S., Verhoeven, R., Franitza, D.: Design, analysis and realization of tendon-based parallel manipulators. Mech. Mach. Theory 40, 429–445 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Maier, T.: Bahnsteuerung eines seilgeführten Handhabungssystems–Modellbildung, Simulation und Experiment. Fortschrittberichte VDI, Reihe 8, Band 1047. VDI-Verlag, Düsseldorf (2004).Google Scholar
  11. 11.
    Meinicke, A.: Kalibrierung von Inertialmessystemen ind Integrierte Navigation zur Lageregelung eines Mehrseilkrans. Ph.D. Thesis, Universität Rostock (2009).Google Scholar
  12. 12.
    Miermeister, P., Pott, A.: Modelling and real-time dynamic simulation of the cable-driven parallel robot IPAnema. In: Pisla, D., et al. (eds.) New Trends in Mechanism Science: Analysis and Design, pp. 353–360. Springer, Berlin (2010)CrossRefGoogle Scholar
  13. 13.
    Ming, A., Higuchi, T.: Study on multiple degree-of-freedom positioning mechanisms using wires (parts 1 and 2). Int. J. Jpn. Soc. Precis. Eng. 28, 131–138 and 235–242 (1994).Google Scholar
  14. 14.
    Sawodny, O., Aschemann, H., Lahres, R., Hofer, E.: Tracking control for automated bridge cranes. In: Tzafestas, S. (ed.) Advances in Manufacturing, pp. 310–320. Springer, Berlin (1999)Google Scholar
  15. 15.
    Verhoeven, R., Hiller, M., Tadokoro, S.: Singularities and classification of tendon-driven stewart platforms. In: Lenarčič, J., Husty, M. (eds.) Advances in Robot Kinematics: Analysis and Control, pp. 105–114. Kluwer Academic Publishers, Amsterdam (1998)Google Scholar
  16. 16.
    Woernle, C.: Mehrkörpersysteme. Springer, Berlin (2011)CrossRefGoogle Scholar
  17. 17.
    Yamamoto, M., Yanai, N., Mohri, A.: Trajectory control of incompletely restrained parellel-wire-suspended mechanism based on inverse dynamics. IEEE Trans. Robot. 20, 840–850 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of RostockRostockGermany

Personalised recommendations