Histone Variants and Reprogramming in Early Development

  • Ana Bošković
  • Maria-Elena Torres-Padilla
Part of the Epigenetics and Human Health book series (EHH)


In addition to the well-studied epigenetic mechanisms associated with DNA methylation and histone modifications, histone variants have emerged as major regulators of chromatin activity. Apart from the major core histones, whose synthesis and incorporation into chromatin is linked to the S-phase of the cell cycle, histone ʻvariantsʼ are synthesised and incorporated into chromatin independently of DNA synthesis. These replacement histones confer distinct properties to nucleosomes and appear to be involved in important epigenetic processes. A significant role for histone variants in specialised chromatin signatures after fertilisation has emerged in the recent years. Here we review our knowledge on the involvement and the function of histone variants during the reprogramming phase occurring after mammalian fertilisation in vivo. We postulate that addressing the reprogramming mechanisms in its natural context, where this process occurs with a high efficiency to give rise to a new developmental programme, will help us to understand how we can modulate cell plasticity in induced and experimental models. Although there is still much to learn on how specific histone variants regulate reprogramming mechanistically, histone variants provide a remarkably versatile and exquisitely powerful way of regulating chromatin function in different biological contexts. Thus, the usage of histone variants provides an extra layer of regulation to the complexity of the reprogramming process.


Somatic Cell Nuclear Transfer Histone Variant Epigenetic Reprogram Male Pronucleus Mouse Zygote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.E.T.-P. acknowledges funding from ANR-09-Blanc-0114, EpiGeneSys NoE, ERC-Stg ‘NuclearPotency’ and the FP7 Marie-Curie Actions ITN Nucleosome4D. A.B. is an early research fellow of the FP7 Marie-Curie Actions ITN Nucleosome4D.


  1. Ahmad K, Henikoff S (2002a) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200PubMedGoogle Scholar
  2. Ahmad K, Henikoff S (2002b) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99(Suppl 4):16477–16484PubMedCentralPubMedGoogle Scholar
  3. Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5(5):e10531. doi: 10.1371/journal.pone.0010531 PubMedCentralPubMedGoogle Scholar
  4. Akiyama T, Suzuki O, Matsuda J, Aoki F (2011) Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 7(10):e1002279. doi: 10.1371/journal.pgen.1002279 PGENETICS-D-11-00020 PubMedCentralPubMedGoogle Scholar
  5. Allis CD, Richman R, Gorovsky MA, Ziegler YS, Touchstone B, Bradley WA, Cook RG (1986) hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J Biol Chem 261(4):1941–1948PubMedGoogle Scholar
  6. Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S (2003) The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11(4):1033–1041, doi:S109727650300100X [pii]PubMedGoogle Scholar
  7. Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181(2):296–307. doi: 10.1006/dbio.1996.8466 PubMedGoogle Scholar
  8. Arico JK, Katz DJ, van der Vlag J, Kelly WG (2011) Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells. PLoS Genet 7(6):e1001391. doi: 10.1371/journal.pgen.1001391 PubMedCentralPubMedGoogle Scholar
  9. Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46(3):317–320PubMedGoogle Scholar
  10. Babiarz JE, Halley JE, Rine J (2006) Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 20(6):700–710, doi:20/6/700 [pii]PubMedCentralPubMedGoogle Scholar
  11. Banaszynski LA, Allis CD, Lewis PW (2010) Histone variants in metazoan development. Dev Cell 19(5):662–674, doi:S1534-5807(10)00467-3 [pii]PubMedCentralPubMedGoogle Scholar
  12. Bao Y, Konesky K, Park YJ, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 23(16):3314–3324. doi: 10.1038/sj.emboj.7600316 PubMedCentralPubMedGoogle Scholar
  13. Bassing CH, Alt FW (2004) The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 3(8–9):781–796Google Scholar
  14. Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42(12):1093–1100PubMedGoogle Scholar
  15. Boskovic A, Bender A, Gall L, Ziegler-Birling C, Beaujean N, Torres-Padilla ME (2012) Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics 7(7):747–757, doi:20584 [pii]PubMedGoogle Scholar
  16. Boussouar F, Rousseaux S, Khochbin S (2008) A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle 7(22):3499–3502, doi:6975PubMedGoogle Scholar
  17. Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, Brickner JH (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5(4):e81, doi:06-PLBI-RA-1628R2 [pii]PubMedCentralPubMedGoogle Scholar
  18. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17(6):679–687, doi:nsmb.1821 [pii]PubMedGoogle Scholar
  19. Burton A, Torres-Padilla ME (2010) Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 9(5–6):444–454, doi:elq027 [pii]PubMedCentralPubMedGoogle Scholar
  20. Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D, Gutierrez A, Morey L, Guigo R, Lopez-Schier H, Di Croce L (2009) The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 16(10):1074–1079, doi:nsmb.1665 [pii]PubMedGoogle Scholar
  21. Chadwick BP, Willard HF (2001) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152(2):375–384PubMedCentralPubMedGoogle Scholar
  22. Chakravarthy S, Bao Y, Roberts VA, Tremethick D, Luger K (2004) Structural characterization of histone H2A variants. Cold Spring Harb Symp Quant Biol 69:227–234PubMedGoogle Scholar
  23. Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K (2005) Structural characterization of the histone variant macroH2A. Mol Cell Biol 25(17):7616–7624, doi:25/17/7616 [pii]PubMedCentralPubMedGoogle Scholar
  24. Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP (2005) A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 278(2):367–380, doi:S0012-1606(04)00811-5 [pii]PubMedGoogle Scholar
  25. Clarkson MJ, Wells JR, Gibson F, Saint R, Tremethick DJ (1999) Regions of variant histone His2AvD required for Drosophila development. Nature 399(6737):694–697. doi: 10.1038/21436 PubMedGoogle Scholar
  26. Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393(6685):599–601. doi: 10.1038/31275 PubMedGoogle Scholar
  27. Costanzi C, Stein P, Worrad DM, Schultz RM, Pehrson JR (2000) Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 127(11):2283–2289PubMedGoogle Scholar
  28. Couldrey C, Carlton MB, Nolan PM, Colledge WH, Evans MJ (1999) A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet 8(13):2489–2495, doi:ddc281 [pii]PubMedGoogle Scholar
  29. Daujat S, Weiss T, Mohn F, Lange UC, Ziegler-Birling C, Zeissler U, Lappe M, Schubeler D, Torres-Padilla ME, Schneider R (2009) H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol 16(7):777–781, doi:nsmb.1629 [pii]PubMedGoogle Scholar
  30. Dimitrov S, Dasso MC, Wolffe AP (1994) Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly. J Cell Biol 126(3):591–601PubMedGoogle Scholar
  31. Doyen CM, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S (2006) Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 25(18):4234–4244PubMedCentralPubMedGoogle Scholar
  32. Eirin-Lopez JM, Ishibashi T, Ausio J (2008) H2A.Bbd: a quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. FASEB J 22(1):316–326, doi:fj.07-9255com [pii]PubMedGoogle Scholar
  33. Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ, Lyons I (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11(15):1183–1187, doi:S0960-9822(01)00329-3 [pii]PubMedGoogle Scholar
  34. Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberger M, Reik W (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4(6):e1000116PubMedCentralPubMedGoogle Scholar
  35. Gamble MJ, Kraus WL (2010) Multiple facets of the unique histone variant macroH2A: from genomics to cell biology. Cell Cycle 9(13):2568–2574, doi:12144 [pii]PubMedGoogle Scholar
  36. Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S (2010) From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 277(3):599–604PubMedGoogle Scholar
  37. Gill ME, Erkek S, Peters AH (2012) Parental epigenetic control of embryogenesis: a balance between inheritance and reprogramming? Curr Opin Cell Biol 24(3):387–396PubMedGoogle Scholar
  38. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691, doi:S0092-8674(10)00004-8 [pii]PubMedCentralPubMedGoogle Scholar
  39. Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thevenon J, Catena R, Davidson I, Garin J, Khochbin S, Caron C (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176(3):283–294, doi:jcb.200604141 [pii]PubMedCentralPubMedGoogle Scholar
  40. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452(7189):877–881, doi:nature06714 [pii]PubMedGoogle Scholar
  41. Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281(1):559–568, doi:M509266200 [pii]PubMedGoogle Scholar
  42. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478, doi:nature08162 [pii]PubMedCentralPubMedGoogle Scholar
  43. Hernadez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M (2005) Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A 102(21):7635–7640. doi: 10.1073/pnas.0408918102 Google Scholar
  44. Hodl M, Basler K (2009) Transcription in the absence of histone H3.3. Curr Biol 19(14):1221–1226, doi:S0960-9822(09)01183-X [pii]PubMedGoogle Scholar
  45. Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17(12):1032–1037PubMedGoogle Scholar
  46. Ingouff M, Rademacher S, Holec S, Soljic L, Xin N, Readshaw A, Foo SH, Lahouze B, Sprunck S, Berger F (2010) Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol 20(23):2137–2143, doi:S0960-9822(10)01437-5 [pii]PubMedGoogle Scholar
  47. Iouzalen N, Moreau J, Mechali M (1996) H2A.ZI, a new variant histone expressed during Xenopus early development exhibits several distinct features from the core histone H2A. Nucleic Acids Res 24(20):3947–3952, doi:6w0119 [pii]PubMedCentralPubMedGoogle Scholar
  48. Ishibashi T, Dryhurst D, Rose KL, Shabanowitz J, Hunt DF, Ausio J (2009) Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 48(22):5007–5017. doi: 10.1021/bi900196c PubMedCentralPubMedGoogle Scholar
  49. Ishibashi T, Li A, Eirin-Lopez JM, Zhao M, Missiaen K, Abbott DW, Meistrich M, Hendzel MJ, Ausio J (2010) H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res 38(6):1780–1789, doi:gkp1129 [pii]PubMedCentralPubMedGoogle Scholar
  50. Kafer GR, Lehnert SA, Pantaleon M, Kaye PL, Moser RJ (2010) Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos. Gene Expr Patterns 10(6):299–305, doi:S1567-133X(10)00063-3PubMedGoogle Scholar
  51. Kalocsay M, Hiller NJ, Jentsch S (2009) Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 33(3):335–343PubMedGoogle Scholar
  52. Kamieniarz K, Izzo A, Dundr M, Tropberger P, Ozretic L, Kirfel J, Scheer E, Tropel P, Wisniewski JR, Tora L, Viville S, Buettner R, Schneider R (2012) A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes Dev 26(8):797–802PubMedCentralPubMedGoogle Scholar
  53. Kaufman PD (1996) Nucleosome assembly: the CAF and the HAT. Curr Opin Cell Biol 8(3):369–373PubMedGoogle Scholar
  54. Kim JM, Liu H, Tazaki M, Nagata M, Aoki F (2003) Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 162(1):37–46. doi: 10.1083/jcb.200303047 PubMedCentralPubMedGoogle Scholar
  55. Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117(Pt 12):2491–2501PubMedGoogle Scholar
  56. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedGoogle Scholar
  57. Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437(7063):1386–1390, doi:nature04059 [pii]PubMedGoogle Scholar
  58. Ma J, Svoboda P, Schultz RM, Stein P (2001) Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol Reprod 64(6):1713–1721PubMedGoogle Scholar
  59. Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112(5):725–736, doi:S0092867403001235 [pii]PubMedGoogle Scholar
  60. Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N (1999) Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J Cell Biol 147(7):1399–1408PubMedCentralPubMedGoogle Scholar
  61. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116PubMedCentralPubMedGoogle Scholar
  62. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–58Google Scholar
  63. Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M, Tanaka S, Shiota K, Nakano T (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9(1):64–71, doi:ncb1519 [pii]PubMedGoogle Scholar
  64. Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486(7403):415–419PubMedGoogle Scholar
  65. Nashun B, Yukawa M, Liu H, Akiyama T, Aoki F (2010) Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 137(22):3785–3794, doi:dev.051805 [pii]PubMedGoogle Scholar
  66. Nesterova TB, Mermoud JE, Hilton K, Pehrson J, Surani MA, McLaren A, Brockdorff N (2002) Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. Differentiation 69(4–5):216–225, doi:S0301-4681(09)60375-3 [pii]PubMedGoogle Scholar
  67. Ng RK, Gurdon JB (2008) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10(1):102–109, doi:ncb1674 [pii]PubMedGoogle Scholar
  68. Okamoto I, Heard E (2006) The dynamics of imprinted X inactivation during preimplantation development in mice. Cytogenet Genome Res 113(1–4):318–324PubMedGoogle Scholar
  69. Ooi SL, Priess JR, Henikoff S (2006) Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet 2(6):e97, doi:06-PLGE-RA-0055R3 [pii]PubMedCentralPubMedGoogle Scholar
  70. Pantazis P, Bonner WM (1981) Quantitative determination of histone modification. H2A acetylation and phosphorylation. J Biol Chem 256(9):4669–4675PubMedGoogle Scholar
  71. Pasque V, Gillich A, Garrett N, Gurdon JB (2011) Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 30(12):2373–2387. doi: 10.1038/emboj.2011.144 PubMedCentralPubMedGoogle Scholar
  72. Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19(4):625–638, doi:S1534-5807(10)00420-X [pii]PubMedGoogle Scholar
  73. Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH, van Lohuizen M, Peters AH (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40(4):411–420, doi:ng.99 [pii]PubMedGoogle Scholar
  74. Rangasamy D, Berven L, Ridgway P, Tremethick DJ (2003) Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 22(7):1599–1607. doi: 10.1093/emboj/cdg160 PubMedCentralPubMedGoogle Scholar
  75. Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LE, Almouzni G (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 44(6):928–941PubMedGoogle Scholar
  76. Ren Q, Gorovsky MA (2001) Histone H2A.Z acetylation modulates an essential charge patch. Mol Cell 7(6):1329–1335, doi:S1097-2765(01)00269-6 [pii]PubMedGoogle Scholar
  77. Ridgway P, Brown KD, Rangasamy D, Svensson U, Tremethick DJ (2004) Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J Biol Chem 279(42):43815–43820. doi: 10.1074/jbc.M408409200 PubMedGoogle Scholar
  78. Sakai A, Schwartz BE, Goldstein S, Ahmad K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19(21):1816–1820, doi:S0960-9822(09)01700-XPubMedCentralPubMedGoogle Scholar
  79. Santenard A, Torres-Padilla ME (2009) Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4(2):80–84, doi:7838 [pii]PubMedGoogle Scholar
  80. Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister A, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12(9):853–862PubMedCentralPubMedGoogle Scholar
  81. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182. doi: 10.1006/dbio.2001.0501 PubMedGoogle Scholar
  82. Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280(1):225–236PubMedGoogle Scholar
  83. Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P (2007) Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 27(18):6457–6468, doi:MCB.00241-07 [pii]PubMedCentralPubMedGoogle Scholar
  84. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43(8):811–814PubMedCentralPubMedGoogle Scholar
  85. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484(7394):339–344PubMedCentralPubMedGoogle Scholar
  86. Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7(12):1121–1124PubMedGoogle Scholar
  87. Szenker E, Lacoste N, Almouzni G (2012) A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep 1(6):730–740, doi:S2211-1247(12)00130-1 [pii]PubMedGoogle Scholar
  88. Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SW, Cross GA, Cui L, Dimitrov SI, Doenecke D, Eirin-Lopez JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5:7PubMedCentralPubMedGoogle Scholar
  89. Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50(5):455–461PubMedGoogle Scholar
  90. Turinetto V, Orlando L, Sanchez-Ripoll Y, Kumpfmueller B, Storm MP, Porcedda P, Minieri V, Saviozzi S, Accomasso L, Rocchietti EC, Moorwood K, Circosta P, Cignetti A, Welham MJ, Giachino C (2012) High basal gammaH2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells 30(7):1414–1423PubMedGoogle Scholar
  91. Valdes-Mora F, Song JZ, Statham AL, Strbenac D, Robinson MD, Nair SS, Patterson KI, Tremethick DJ, Stirzaker C, Clark SJ (2012) Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 22(2):307–321, doi:gr.118919.110 [pii]PubMedCentralPubMedGoogle Scholar
  92. van Daal A, Elgin SC (1992) A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell 3(6):593–602PubMedCentralPubMedGoogle Scholar
  93. van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122(9):1008–1022PubMedGoogle Scholar
  94. van der Heijden GW, van den Berg IM, Baart EB, Derijck AA, Martini E, de Boer P (2009) Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI. Mol Reprod Dev 76(1):101–108. doi: 10.1002/mrd.20933 PubMedGoogle Scholar
  95. Wang AY, Aristizabal MJ, Ryan C, Krogan NJ, Kobor MS (2011) Key functional regions in the histone variant H2A.Z C-terminal docking domain. Mol Cell Biol 31(18):3871–3884PubMedCentralPubMedGoogle Scholar
  96. Wenkert D, Allis CD (1984) Timing of the appearance of macronuclear-specific histone variant hv1 and gene expression in developing new macronuclei of Tetrahymena thermophila. J Cell Biol 98(6):2107–2117PubMedGoogle Scholar
  97. Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229(2):301–306PubMedGoogle Scholar
  98. Wollmann H, Holec S, Alden K, Clarke ND, Jacques PE, Berger F (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet 8(5):e1002658PubMedCentralPubMedGoogle Scholar
  99. Wossidlo M, Arand J, Sebastiano V, Lepikhov K, Boiani M, Reinhardt R, Scholer H, Walter J (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J 29(11):1877–1888, doi:emboj201080 [pii]PubMedCentralPubMedGoogle Scholar
  100. Wratting D, Thistlethwaite A, Harris M, Zeef LA, Millar CB (2012) A conserved function for the H2A.Z C terminus. J Biol Chem 287(23):19148–19157PubMedCentralPubMedGoogle Scholar
  101. Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278(32):29471–29477. doi: 10.1074/jbc.M304545200 PubMedGoogle Scholar
  102. Zha S, Sekiguchi J, Brush JW, Bassing CH, Alt FW (2008) Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc Natl Acad Sci U S A 105(27):9302–9306PubMedCentralPubMedGoogle Scholar
  103. Ziegler-Birling C, Helmrich A, Tora L, Torres-Padilla ME (2009) Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int J Dev Biol 53(7):1003–1011, doi:082707czPubMedGoogle Scholar
  104. Zlatanova J, Thakar A (2008) H2A.Z: view from the top. Structure 16(2):166–179, doi:S0969-2126(08)00002-6 [pii]PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS/INSERM U964, U de S, Illkirch, CU de StrasbourgFrance

Personalised recommendations