The Use of Nanostructures for DNA Transfection

  • Vinicius Farias CamposEmail author
  • Virgínia Yurgel
  • Fabiana Kömmling Seixas
  • Tiago Collares
Part of the Carbon Nanostructures book series (CARBON, volume 3)


The interaction between nanostructured materials and living systems is of fundamental and practical interest and will determine the biocompatibility, potential utilities and applications of novel nanomaterials in biological settings. The pursuit of new types of molecular transporters is an active area of research, due to the high impermeability of cell membranes and other biological barriers to foreign substances and the need for intercellular delivery of molecules via cell-penetrating transporter for drug, gene or protein therapeutics. Here, is described the novel nanostructure-based transfection systems. The transfection uses of nanopolymers, nanoparticles and nanotubes are the main focus of this review. In addition are described the technique called NanoSMGT that uses nanostructures for DNA transfection in sperm cells that could be used for transgenic animal generation or human gene therapy.


Magnetic Nanoparticles Sperm Cell Somatic Cell Nuclear Transfer Human Gene Therapy Transfection System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anzar, M., Buhr, M.M.: Spontaneous uptake of exogenous DNA by bull spermatozoa. Theriogenology 65, 683–690 (2006). doi: 10.1016/j.theriogenology.2005.06.009 CrossRefGoogle Scholar
  2. 2.
    Aoki, T., Miyauchi, K., Urano, E., Ichikawa, R., Komano, J.: Protein transduction by pseudotyped lentivirus-like nanoparticles. Gene Ther. 18, 936–941 (2011). doi: 10.1038/gt.2011.38 CrossRefGoogle Scholar
  3. 3.
    Baldi, L., Hacker, D.L., Meerschman, C., Wurm, F.M.: Large-scale transfection of Mammalian cells. Methods Mol. Biol. 801, 13–26 (2012). doi: 10.1007/978-1-61779-352-3_2 CrossRefGoogle Scholar
  4. 4.
    Berry, C.C.: Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine (Lond) 3, 357–365 (2008). doi: 10.2217/17435889.3.3.357 CrossRefGoogle Scholar
  5. 5.
    Bilensoy, E.: Cationic nanoparticles for cancer therapy. Expert Opin Drug Deliv 7, 795–809 (2010). doi: 10(1517/17425247).2010.485983 CrossRefGoogle Scholar
  6. 6.
    Campos, V.F., Amaral, M.G., Seixas, F.K., Pouey, J.L., Selau, L.P., Dellagostin, O.A., Deschamps, J.C., Collares, T.: Exogenous DNA uptake by South American catfish (Rhamdia quelen) spermatozoa after seminal plasma removal. Anim. Reprod. Sci. 126, 136–141 (2011). doi: 10.1016/j.anireprosci.2011.05.004 CrossRefGoogle Scholar
  7. 7.
    Campos, V.F., de Leon, P.M., Komninou, E.R., Dellagostin, O.A., Deschamps, J.C., Seixas, F.K., Collares, T.: NanoSMGT: Transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 76, 1552–1560 (2011). doi: 10.1016/j.theriogenology.2011.06.027 CrossRefGoogle Scholar
  8. 8.
    Campos, VF., Komninou, ER., Urtiaga, G., de Leon, PM., Seixas, FK., Dellagostin, OA., Deschamps, JC., Collares, T.: NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 75, 1476–1481. (2011c)  10.1016/j.theriogenology.2011.01.009
  9. 9.
    Chen, C.C., Liu, Y.C., Wu, C.H., Yeh, C.C., Su, M.T., Wu, Y.C.: Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv. Mater. 17, 404 (2005). doi: 10.1002/adma.200400966 CrossRefGoogle Scholar
  10. 10.
    Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998)CrossRefGoogle Scholar
  11. 11.
    Cheng, J., Fernando, K.A., Veca, L.M., Sun, Y.P., Lamond, A.I., Lam, Y.W., Cheng, S.H.: Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2, 2085–2094 (2008). doi: 10.1021/nn800461u CrossRefGoogle Scholar
  12. 12.
    Collares, T., Campos, V.F., Leon, P.M.M., Cavalcanti, P.V., Amaral, M.G., Dellagostin, O.A., Deschamps, J.C., Seixas, F.K.: Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N, N-dimethylacetamide. J. Biosci. 36, 613–620 (2011). doi: 10.1007/s12038-011-9098-x CrossRefGoogle Scholar
  13. 13.
    Collares, T., Campos, V.F., Seixas, F.K., Cavalcanti, P.V., Dellagostin, O.A., Moreira, H.L., Deschamps, J.C.: Transgene transmission in South American catfish (Rhamdia quelen) larvae by sperm-mediated gene transfer. J. Biosci. 35, 39–47 (2010). doi: 10.1007/s12038-010-0006-6 CrossRefGoogle Scholar
  14. 14.
    Dai, Z., Gjetting, T., Mattebjerg, M.A., Wu, C., Andresen, T.L.: Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials 32, 8626–8634 (2011). doi: 10.1016/j.biomaterials.2011.07.044 CrossRefGoogle Scholar
  15. 15.
    de la Fuente, J.M., Berry, C.C., Riehle, M.O., Curtis, A.S.: Nanoparticle targeting at cells. Langmuir 22, 3286–3293 (2006). doi: 10.1021/la053029v CrossRefGoogle Scholar
  16. 16.
    Dittrich, M., Heinze, M., Wolk, C., Funari, S.S., Dobner, B., Mohwald, H., Brezesinski, G.: Structure-function relationships of new lipids designed for DNA transfection. Chem. Phys. Chem 12, 2328–2337 (2011). doi: 10.1002/cphc.201100065 CrossRefGoogle Scholar
  17. 17.
    Douglas, S.J., Davis, S.S., Illum, L.: Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 3, 233–261 (1987)Google Scholar
  18. 18.
    Fischer, D., Bieber, T., Li, Y., Elsasser, H.P., Kissel, T.: A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16, 1273–1279 (1999)CrossRefGoogle Scholar
  19. 19.
    Garcia-Vazquez, F.A., Ruiz, S., Matas, C., Izquierdo-Rico, M.J., Grullon, L.A., De, O.A., Vieira, L., Aviles-Lopez, K., Gutierrez-Adan, A., Gadea, J.: Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 140, 259–272 (2010). doi: 10.1530/REP-10-0129 CrossRefGoogle Scholar
  20. 20.
    Gersting, S.W., Schillinger, U., Lausier, J., Nicklaus, P., Rudolph, C., Plank, C., Reinhardt, D., Rosenecker, J.: Gene delivery to respiratory epithelial cells by magnetofection. J Gene Med 6, 913–922 (2004). doi: 10.1002/jgm.569 CrossRefGoogle Scholar
  21. 21.
    Harel-Markowitz, E., Gurevich, M., Shore, L.S., Katz, A., Stram, Y., Shemesh, M.: Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone. Biol. Reprod. 80, 1046–1052 (2009). doi: 10.1095/biolreprod.108.070375 CrossRefGoogle Scholar
  22. 22.
    Hosseinkhani, H., Azzam, T., Tabata, Y., Domb, A.J.: Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther. 11, 194–203 (2004). doi: 10.1038/ CrossRefGoogle Scholar
  23. 23.
    Ino, K., Kawasumi, T., Ito, A., Honda, H.: Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet. Biotechnol. Bioeng. 100, 168–176 (2008). doi: 10.1002/bit.21738 CrossRefGoogle Scholar
  24. 24.
    Kadota, S., Kanayama, T., Miyajima, N., Takeuchi, K., Nagata, K.: Enhancing of measles virus infection by magnetofection. J. Virol. Methods 128, 61–66 (2005). doi: 10.1016/j.jviromet.2005.04.003 CrossRefGoogle Scholar
  25. 25.
    Kam, N.W., Dai, H.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005). doi: 10.1021/ja050062v CrossRefGoogle Scholar
  26. 26.
    Kam, N.W., Liu, Z., Dai, H.: Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–12493 (2005). doi: 10.1021/ja053962k CrossRefGoogle Scholar
  27. 27.
    Kang, J.H., Hakimov, H., Ruiz, A., Friendship, R.M., Buhr, M., Golovan, S.P.: The negative effects of exogenous DNA binding on porcine spermatozoa are caused by removal of seminal fluid. Theriogenology 70, 1288–1296 (2008). doi: 10.1016/j.theriogenology.2008.06.011 CrossRefGoogle Scholar
  28. 28.
    Kim, T.S., Lee, S.H., Gang, G.T., Lee, Y.S., Kim, S.U., Koo, D.B., Shin, M.Y., Park, C.K., Lee, D.S.: Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod. Domest. Anim. 45, e201–e206 (2010). doi: 10.1111/j.1439-0531.2009.01516.x CrossRefGoogle Scholar
  29. 29.
    Kong, D., Cui, Y.: Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat Chem 3, 845–849 (2011). doi: 1038/nchem.1171 CrossRefGoogle Scholar
  30. 30.
    Lanes, C.F., Sampaio, L.A., Marins, L.F.: Evaluation of DNase activity in seminal plasma and uptake of exogenous DNA by spermatozoa of the Brazilian flounder Paralichthys orbignyanus. Theriogenology 71, 525–533 (2009). doi: 10.1016/j.theriogenology.2008.08.019 CrossRefGoogle Scholar
  31. 31.
    Lappalainen, K., Jaaskelainen, I., Syrjanen, K., Urtti, A., Syrjanen, S.: Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm. Res. 11, 1127–1131 (1994)CrossRefGoogle Scholar
  32. 32.
    Lay, C.L., Liu, J., Liu, Y.: Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 8, 561–566 (2011). doi: 10.1586/erd.11.34 CrossRefGoogle Scholar
  33. 33.
    Levis, S.R., Deasy, P.B.: Characterisation of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125–134 (2002). doi: S0378517302002740 CrossRefGoogle Scholar
  34. 34.
    Li, C., Guo, T., Zhou, D., Hu, Y., Zhou, H., Wang, S., Chen, J., Zhang, Z.: A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154, 177–188 (2011). doi: 10.1016/j.jconrel.2011.06.007 CrossRefGoogle Scholar
  35. 35.
    Liu, Z., Zheng, M., Meng, F., Zhong, Z.: Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. Biomaterials 32, 9109–9119 (2011). doi: 10.1016/j.biomaterials.2011.08.017 CrossRefGoogle Scholar
  36. 36.
    Makhluf, S.B., Abu-Mukh, R., Rubinstein, S., Breitbart, H., Gedanken, A.: Modified PVA-Fe3O4 nanoparticles as protein carriers into sperm cells. Small 4, 1453–1458 (2008). doi: 10.1002/smll.200701308 CrossRefGoogle Scholar
  37. 37.
    Qin, W., Yang, K., Tang, H., Tan, L., Xie, Q., Ma, M., Zhang, Y., Yao, S.: Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces 84, 206–213 (2011). doi: 10.1016/j.colsurfb.2011.01.001 CrossRefGoogle Scholar
  38. 38.
    Sajja, H.K., East, M.P., Mao, H., Wang, Y.A., Nie, S., Yang, L.: Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol. 6, 43–51 (2009)CrossRefGoogle Scholar
  39. 39.
    Shimamura, M., Morishita, R.: Naked plasmid DNA for gene therapy. Curr. Gene Ther. 11, 433, (2011) BSP/CGT/E-Pub/00089Google Scholar
  40. 40.
    Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005). doi: 10.1021/ja0441561 CrossRefGoogle Scholar
  41. 41.
    Smith, K., Spadafora, C.: Sperm-mediated gene transfer: applications and implications. BioEssays 27, 551–562 (2005). doi: 10.1002/bies.20211 CrossRefGoogle Scholar
  42. 42.
    Song, H.P., Yang, J.Y., Lo, S.L., Wang, Y., Fan, W.M., Tang, X.S., Xue, J.M., Wang, S.: Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 31, 769–778 (2010). doi: 10.1016/j.biomaterials.2009.09.085 CrossRefGoogle Scholar
  43. 43.
    Spadafora, C.: Sperm-mediated gene transfer: mechanisms and implications. Soc. Reprod. Fertil. Suppl. 65, 459–467 (2007)Google Scholar
  44. 44.
    Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R., Leporatti, S.: Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11, 820–826 (2010). doi: 10.1021/bm9014446 CrossRefGoogle Scholar
  45. 45.
    Wu, Y., Phillips, J.A., Liu, H., Yang, R., Tan, W.: Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2, 2023–2028 (2008). doi: 10.1021/nn800325a CrossRefGoogle Scholar
  46. 46.
    Yao, H., Ng, S.S., Tucker, W.O., Tsang, Y.K., Man, K., Wang, X.M., Chow, B.K., Kung, H.F., Tang, G.P., Lin, M.C.: The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials 30, 5793–5803 (2009). doi: 10.1016/j.biomaterials.2009.06.051 CrossRefGoogle Scholar
  47. 47.
    Zecchin, D., Di, N.F.: Transfection and DNA-mediated gene transfer. Methods Mol. Biol. 731, 435–450 (2011). doi: 10.1007/978-1-61779-080-5_35 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vinicius Farias Campos
    • 1
    Email author
  • Virgínia Yurgel
    • 1
  • Fabiana Kömmling Seixas
    • 1
  • Tiago Collares
    • 1
  1. 1.Grupo de Pesquisa em Oncologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotas-RSBrazil

Personalised recommendations