Exploiting Constraints

  • Toby Walsh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7207)

Abstract

Constraints can be exploited in paradigms outside of constraint programming. In particular, powerful global constraints can often be decomposed into small primitives and these decompositions can simulate complex propagation algorithms that perform sophisticated inference about a problem. We illustrate this approach with examples of exploiting constraints in propositional satisfiability (SAT), pseudo-Boolean (PB) solving, integer linear programming (ILP) and answer set programming (ASP).

Keywords

Integer Linear Programming Global Constraint Conjunctive Normal Form Joint Conf Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier (2006)Google Scholar
  2. 2.
    Walsh, T.: Constraint Patterns. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 53–64. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Lauriere, J.: Alice: A language and a program for solving combinatorial problems. Artificial Intelligence 10, 29–127 (1978)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proc. of the 12th National Conf. on AI, AAAI, pp. 362–367 (1994)Google Scholar
  5. 5.
    Bessière, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions of all different, global cardinality and related constraints. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (2009)Google Scholar
  6. 6.
    Leconte, M.: A bounds-based reduction scheme for constraints of difference. In: Proc. of Second Int. Workshop on Constraint-based Reasoning (Constraint 1996) (1996)Google Scholar
  7. 7.
    Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: 15th National Conf. on Artificial Intelligence, AAAI, pp. 359–366 (1998)Google Scholar
  8. 8.
    Mehlhorn, K., Thiel, S.: Faster Algorithms for Bound-Consistency of the Sortedness and the Alldifferent Constraint. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 306–319. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Lopez-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds consistency of the alldifferent constraint. In: Proc. of the 18th Int. Joint Conf. on AI, IJCAI (2003)Google Scholar
  10. 10.
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Gent, I., Prosser, P., Smith, B.: A 0/1 encoding of the GACLex constraint for pairs of vectors. In: Proc. of ECAI 2002 Workshop on Modelling and Solving Problems with Constraints (2002)Google Scholar
  12. 12.
    Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.-G., Walsh, T.: Decomposition of the NValue Constraint. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 114–128. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory and Practice of Logic Programming 10(4-6), 465–480 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Drescher, C., Walsh, T.: Modelling GRAMMAR constraints with answer set programming. In: Proc. of the 27th Int. Conf. on Logic Programming, ICLP 2011 (2011)Google Scholar
  15. 15.
    Drescher, C., Walsh, T.: Translation-based constraint answer set solving. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence, IJCAI (2011)Google Scholar
  16. 16.
    Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Propagating conjunctions of alldifferent constraints. In: Proc. of the Twenty-Fourth AAAI Conf. on Artificial Intelligence (AAAI 2010). AAAI (2010)Google Scholar
  18. 18.
    Bessière, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decompositions of global constraints. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence, IJCAI (2009)Google Scholar
  19. 19.
    Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the Sequence Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Maher, M., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-Based Propagators for the SEQUENCE and Related Global Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Law, Y.C., Lee, J.H.M.: Global Constraints for Integer and Set Value Precedence. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Walsh, T.: General Symmetry Breaking Constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Walsh, T.: Breaking Value Symmetry. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 880–887. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Walsh, T.: Breaking value symmetry. In: Proc. of the 23rd National Conf. on AI, AAAI, pp. 1585–1588 (2008)Google Scholar
  25. 25.
    Walsh, T.: Symmetry breaking using value precedence. In: Proc. of the 17th European Conf. on Artificial Intelligence (ECAI 2006). IOS Press (2006)Google Scholar
  26. 26.
    Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The range and roots constraints: Specifying counting and occurrence problems. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, IJCAI, pp. 60–65 (2005)Google Scholar
  27. 27.
    Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The Range Constraint: Algorithms and Implementation. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 59–73. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In: Proc. of the 19th National Conf. on AI, AAAI (2004)Google Scholar
  29. 29.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The ROOTS Constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 75–90. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating Global Constraints: The Slide and Regular Constraints. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: a useful special case of the CardPath constraint. In: Proc. of the 18th European Conf. on Artificial Intelligence (ECAI 2008). IOS Press (2008)Google Scholar
  32. 32.
    Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. Constraints 12(2), 239–259 (2007)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 133–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering constraints. Tech. rep. T2002-18, Swedish Institute of Computer Science (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Toby Walsh
    • 1
  1. 1.NICTA and UNSWSydneyAustralia

Personalised recommendations