Advertisement

Molecular Dynamics for Simulating the Protein Folding Process Using the 3D AB Off-Lattice Model

  • César Manuel Vargas Benítez
  • Heitor Silvério Lopes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7409)

Abstract

To the best of our knowledge, this paper presents the first application of Molecular Dynamics to the Protein Folding Problem using the 3D AB model of proteins. Protein folding pathways are also presented and discussed. This work also offered new reference values for five benchmark sequences. Future works will investigate parallel versions of the presented approach and more experiments to create new bechmarks.

Keywords

Protein Folding 3D AB model Molecular Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(96), 223–230 (1973)CrossRefGoogle Scholar
  2. 2.
    Bachmann, M., Arkm, H., Janke, W.: Multicanonical study of coarse-grained off-lattice models for folding heteropolymers. Physical Review E 71, 1–11 (2005)CrossRefGoogle Scholar
  3. 3.
    Baker, D.: A suprising simplicity to protein folding. Nature 405, 39–42 (2000)CrossRefGoogle Scholar
  4. 4.
    Benítez, C.M.V., Lopes, H.S.: Hierarchical parallel genetic algorithm applied to the three-dimensional HP side-chain protein folding problem. In: Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 2669–2676 (2010)Google Scholar
  5. 5.
    Benítez, C.M.V., Scalabrin, M., Lopes, H.S., Lima, C.R.E.: Reconfigurable Hardware Computing for Accelerating Protein Folding Simulations Using the Harmony Search Algorithm and the 3D-HP-Side Chain Model. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011, Part II. LNCS, vol. 7017, pp. 363–374. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Berendsen, H.J.C., Postma, J.P.M., van Gusteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. Journal of Chemical Physics 81, 3684 (1984)CrossRefGoogle Scholar
  7. 7.
    Crescenzi, P., Goldman, D., Papadimitrou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. Journal of Computational Biolology 5, 423–446 (1998)CrossRefGoogle Scholar
  8. 8.
    Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., et al.: Principles of protein folding - a perspective from simple exact models. Protein Science 4(4), 561–602 (1995)CrossRefGoogle Scholar
  9. 9.
    Grosberg, A.Y., Khokhlov, A.R.: Statistical Physics of Macromolecules. AIP Press (1994)Google Scholar
  10. 10.
    Gruebele, M.: Protein folding: the free energy surface. Current Opinion in Structural Biology 12(1), 161–168 (2002)CrossRefGoogle Scholar
  11. 11.
    Hunter, L.: Artificial Intelligence and Molecular Biology, 1st edn. AAAI Press, Boston (1993)Google Scholar
  12. 12.
    Irback, A., Peterson, C., Potthast, F., Sommelius, O.: Local interactions and protein folding: A three-dimensional off-lattice approach. Journal of Chemical Physics 1, 273–282 (1997)CrossRefGoogle Scholar
  13. 13.
    Karplus, M.: The Levinthal paradox: yesterday and today. Folding & Design 2(4), S69–S75 (1997)Google Scholar
  14. 14.
    Kim, S.Y., Lee, S.B., Lee, J.: Structure optimization by conformational space annealing in an off-lattice protein model. Physical Review E 72, 1–6 (2005)zbMATHGoogle Scholar
  15. 15.
    Liang, F.: Annealing contour monte carlo algorithm for structure optimization in an off-lattice protein model. Chemical Physics 120, 6756–6763 (2004)Google Scholar
  16. 16.
    Liwo, A., Khalili, M., Scheraga, H.A.: Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proceedings of the National Academy of Sciences 102(7), 2362–2367 (2005)CrossRefGoogle Scholar
  17. 17.
    Mirny, L., Shakhnovich, E.: Protein foding theory: From lattice to all-atom models. Annual Review of Biophysics and Biomolecular Structure 30, 361–396 (2001)CrossRefGoogle Scholar
  18. 18.
    Nishimura, C., Lietzow, M.A., Dyson, H.J., Wright, P.E.: Sequence determinants of a protein folding pathway. Journal of Molecular Biology 351, 383–392 (2005)CrossRefGoogle Scholar
  19. 19.
    Day, R., Daggett, V.: All-atom simulations of protein folding and unfolding. Advances in Protein Chemistry 66, 373–403 (2003)CrossRefGoogle Scholar
  20. 20.
    Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press (2004)Google Scholar
  21. 21.
    Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics 23, 327–341 (1977)CrossRefGoogle Scholar
  22. 22.
    Stillinger, F.H., Head-Gordon, T.: Collective aspects of protein folding illustrated by a toy model. Physical Review E 52(3), 2872–2877 (1995)CrossRefGoogle Scholar
  23. 23.
    Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics 76, 637 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • César Manuel Vargas Benítez
    • 1
  • Heitor Silvério Lopes
    • 1
  1. 1.Bioinformatics LaboratoryFederal University of Technology - ParanáCuritibaBrazil

Personalised recommendations