RNA Folding Algorithms with G-Quadruplexes

  • Ronny Lorenz
  • Stephan H. Bernhart
  • Fabian Externbrink
  • Jing Qin
  • Christian Höner zu Siederdissen
  • Fabian Amman
  • Ivo L. Hofacker
  • Peter F. Stadler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7409)


G-quadruplexes are abundant locally stable structural elements in nucleic acids. The combinatorial theory of RNA structures and the dynamic programming algorithms for RNA secondary structure prediction are extended here to incorporate G-quadruplexes using a simple but plausible energy model. With preliminary energy parameters we find that the overwhelming majority of putative quadruplex-forming sequences in the human genome are likely to fold into canonical secondary structures instead.


Dynamic programming RNA folding ViennaRNA Package 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, A., Suess, B.: An RNA G-quadruplex in the 3’ UTR of the proto-oncogene PIM1 represses translation. RNA Biology 8, 802–805 (2011)CrossRefGoogle Scholar
  2. 2.
    Baral, A., Kumar, P., Halder, R., Mani, P., Yadav, V.K., Singh, A., Das, S.K., Chowdhury, S.: Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals. Nucleic Acids Res. (2012)Google Scholar
  3. 3.
    Beaudoin, J.D., Perreault, J.P.: 5’-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res. 38, 7022–7036 (2010)CrossRefGoogle Scholar
  4. 4.
    Bensaid, M., Melko, M., Bechara, E.G., Davidovic, L., Berretta, A., Catania, M.V., Gecz, J., Lalli, E., Bardoni, B.: FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Res. 37, 1269–1279 (2009)CrossRefGoogle Scholar
  5. 5.
    Bernhart, S.H., Hofacker, I.L., Will, S., Gruber, A.R., Stadler, P.F.: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9, 474 (2008)CrossRefGoogle Scholar
  6. 6.
    Bruccoleri, R.E., Heinrich, G.: An improved algorithm for nucleic acid secondary structure display. Computer Appl. Biosci. 4, 167–173 (1988)Google Scholar
  7. 7.
    Bugaut, A., Balasubramanian, S.: A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47, 689–697 (2008)CrossRefGoogle Scholar
  8. 8.
    Bugaut, A., Balasubramanian, S.: 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. (2012), doi: 10.1093/nar/gks068Google Scholar
  9. 9.
    Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)Google Scholar
  10. 10.
    Eddy, J., Maizels, N.: Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006)CrossRefGoogle Scholar
  11. 11.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, New York (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gomez, D., Guédin, A., Mergny, J.L., Salles, B., Riou, J.F., Teulade-Fichou, M.P., Calsou, P.: A G-quadruplex structure within the 5’-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res. 38, 7187–7198 (2010)CrossRefGoogle Scholar
  13. 13.
    Gros, J., Guédin, A., Mergny, J.L., Lacroix, L.: G-Quadruplex formation interferes with P1 helix formation in the RNA component of telomerase hTERC. ChemBioChem 9, 2075–2079 (2008)CrossRefGoogle Scholar
  14. 14.
    Guédin, A., De Cian, A., Gros, J., Lacroix, L., Mergny, J.L.: Sequence effects in single-base loops for quadruplexes. Biochimie 90, 686–696 (2008)CrossRefGoogle Scholar
  15. 15.
    Guédin, A., Gros, J., Patrizia, A., Mergny, J.L.: How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 38, 7858–7868 (2010)CrossRefGoogle Scholar
  16. 16.
    Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002)CrossRefGoogle Scholar
  17. 17.
    Hofacker, I.L., Priwitzer, B., Stadler, P.F.: Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20, 191–198 (2004)CrossRefGoogle Scholar
  18. 18.
    Huppert, J.L., Balasubramanian, S.: Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005)CrossRefGoogle Scholar
  19. 19.
    Huppert, J.L., Bugaut, A., Kumari, S., Balasubramanian, S.: G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008)CrossRefGoogle Scholar
  20. 20.
    Ito, K., Go, S., Komiyama, M., Xu, Y.: Inhibition of translation by small RNA-stabilized mRNA structures in human cells. J. Am. Chem. Soc. 133, 19153–19159 (2011)CrossRefGoogle Scholar
  21. 21.
    Jayaraj, G.G., Pandey, S., Scaria, V., Maiti, S.: Potential G-quadruplexes in the human long non-coding transcriptome. RNA Biolog. 9, 81–86 (2012)Google Scholar
  22. 22.
    Joachimi, A., Benz, A., Hartig, J.S.: A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg. Med. Chem. 17, 6811–6815 (2009)CrossRefGoogle Scholar
  23. 23.
    Johnson, J.E., Smith, J.S., Kozak, M.L., Johnson, F.B.: In vivo veritas: using yeast to probe the biological functions of G-quadruplexes. Biochimie 90, 1250–1263 (2008)CrossRefGoogle Scholar
  24. 24.
    Kikin, O., D’Antonio, L., Bagga, P.S.: QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676–W682 (2006)Google Scholar
  25. 25.
    Kumari, S., Bugaut, A., Huppert, J.L., Balasubramanian, S.: An RNA G-quadruplex in the 5’UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3, 218–221 (2007)CrossRefGoogle Scholar
  26. 26.
    Lauhon, C.T., Szostak, J.W.: RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117, 1246–1257 (1995)CrossRefGoogle Scholar
  27. 27.
    Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Alg. Mol. Biol. 6, 26 (2011)CrossRefGoogle Scholar
  28. 28.
    Luke, B., Lingner, J.: TERRA: telomeric repeat-containing RNA. EMBO J. 28, 2503–2510 (2009)CrossRefGoogle Scholar
  29. 29.
    Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H.: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287–7292 (2004)CrossRefGoogle Scholar
  30. 30.
    McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)CrossRefGoogle Scholar
  31. 31.
    Menon, L., Mihailescu, M.R.: Interactions of the G quartet forming semaphorin 3F RNA with the RGG box domain of the fragile X protein family. Nucleic Acids Res. 35, 5379–5392 (2007)CrossRefGoogle Scholar
  32. 32.
    Mergny, J.L., Lacroix, L.: UV melting of G-quadruplexes. Curr. Protoc. Nucleic Acid Chem. Unit 17.1 (2009)Google Scholar
  33. 33.
    Morris, M.J., Basu, S.: An unusually stable G-quadruplex within the 5’-UTR of the MT3 matrix metalloproteinase mRNA represses translation in eukaryotic cells. Biochemistry 48, 5313–5319 (2009)CrossRefGoogle Scholar
  34. 34.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhard, S.B., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182 (2006)CrossRefGoogle Scholar
  35. 35.
    Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D., Lipps, H.J.: Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nature Struct. Mol. Biol. 12, 847–854 (2005)CrossRefGoogle Scholar
  36. 36.
    Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: A case study in RNA secondary structures. Proc. Roy. Soc. Lond. B 255, 279–284 (1994)CrossRefGoogle Scholar
  37. 37.
    Webba da Silva, M.: Geometric formalism for DNA quadruplex folding. Chemistry 13, 9738–9745 (2007)CrossRefGoogle Scholar
  38. 38.
    Stegle, O., Payet, L., Mergny, J.L., MacKay, D.J.C., Huppert, J.L.: Predicting and understanding the stability of G-quadruplexes. Bioinformatics 25, i374–i382 (2009)Google Scholar
  39. 39.
    Todd, A.K.: Bioinformatics approaches to quadruplex sequence location. Methods 43, 246–251 (2007)CrossRefGoogle Scholar
  40. 40.
    Verma, A., Halder, K., Halder, R., Yadav, V.K., Rawal, P., Thakur, R.K., Mohd, F., Sharma, A., Chowdhury, S.: G-quadruplex DNA motifs as conserved cis-regulatory elements. J. Med. Chem. 51, 5641–5649 (2008)CrossRefGoogle Scholar
  41. 41.
    Wieland, M., Hartig, J.S.: RNA quadruplex-based modulation of gene expression. Chem. Biol. 14, 757–763 (2007)CrossRefGoogle Scholar
  42. 42.
    Wong, H.M., Payet, L., Huppert, J.L.: Function and targeting of G-quadruplexes. Curr. Opin. Mol. Ther. 11, 146–155 (2009)Google Scholar
  43. 43.
    Zhang, A.Y., Bugaut, A., Balasubramanian, S.: A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry 50, 7251–7258 (2011)CrossRefGoogle Scholar
  44. 44.
    Zhang, D.H., Fujimoto, T., Saxena, S., Yu, H.Q., Miyoshi, D., Sugimoto, N.: Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 49, 4554–4563 (2010)CrossRefGoogle Scholar
  45. 45.
    Zhang, D.H., Zhi, G.Y.: Structure monomorphism of RNA G-quadruplex that is independent of surrounding condition. J. Biotechnol. 150, 6–10 (2010)CrossRefGoogle Scholar
  46. 46.
    Zhao, Y., Du, Z., Li, N.: Extensive selection for the enrichment of G4 DNA motifs in transcriptional regulatory regions of warm blooded animals. FEBS Letters 581, 1951–1956 (2007)CrossRefGoogle Scholar
  47. 47.
    Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ronny Lorenz
    • 1
  • Stephan H. Bernhart
    • 2
  • Fabian Externbrink
    • 2
  • Jing Qin
    • 3
  • Christian Höner zu Siederdissen
    • 1
  • Fabian Amman
    • 1
  • Ivo L. Hofacker
    • 1
    • 4
  • Peter F. Stadler
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Dept. Theoretical ChemistryUniv. ViennaWienAustria
  2. 2.Dept. Computer Science, and Interdisciplinary Center for BioinformaticsUniv. LeipzigLeipzigGermany
  3. 3.Mathematics in the SciencesMPILeipzigGermany
  4. 4.RTHUniv. CopenhagenFrederiksberg CDenmark
  5. 5.Cell Therapy and ImmunologyFHILeipzigGermany
  6. 6.Santa Fe InstituteSanta FeUSA

Personalised recommendations