Transposition Diameter and Lonely Permutations

  • Luís Felipe I. Cunha
  • Luis Antonio B. Kowada
  • Rodrigo de A. Hausen
  • Celina M. H. de Figueiredo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7409)


Determining the transposition distance of permutations was proven recently to be \(\textup{NP}\)-hard. However, the problem of the transposition diameter is still open. The known lower bounds for the diameter were given by Meidanis, Walter and Dias when the lengths of the permutations are even and by Elias and Hartman when the lengths are odd. A better lower bound for the transposition diameter was proposed using the new definition of super-bad permutations, that would be a particular family of the lonely permutations. We show that there are no super-bad permutations, by computing the exact transposition distance of the union of two copies of particular lonely permutations that we call knot permutations. Meidanis, Walter, Dias, Elias and Hartman, therefore, still hold the current best lower bound. Moreover, we consider the union of distinct lonely permutations and manage to define an alternative family of permutations that meets the current lower bound.


comparative genomics genome rearrangement transposition diameter lonely permutations knot permutations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM J. Disc. Math. 11, 224–240 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boore, J.L.: The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Comparative Genomics, pp. 133–148. Kluwer Academic Publishers (2000)Google Scholar
  3. 3.
    Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions Is Difficult. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 654–665. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Christie, D.A.: Genome Rerrangement Problems. Ph.D. dissertation, University of Glasgow, Scotland (1999)Google Scholar
  5. 5.
    Dias, Z.: Rearranjo de genomas: uma coletânea de artigos. Ph.D. dissertation, UNICAMP, Brazil (2002)Google Scholar
  6. 6.
    Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Trans. Comput. Biol. Bioninformatics 3(4), 369–379 (2006)CrossRefGoogle Scholar
  7. 7.
    Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wästlund, J.: Sorting a bridge hand. Discrete Math. 241(1), 289–300 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fortuna, V.J.: Distâncias de Transposição entre Genomas. Master dissertation, Instituto de Computação – UNICAMP, Brazil (2005)Google Scholar
  9. 9.
    Hausen, R.A., Faria, L., de Figueiredo, C.M.H., Kowada, L.A.B.: On the Toric Graph as a Tool to Handle the Problem of Sorting by Transpositions. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 79–91. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hausen, R.A., Faria, L., de Figueiredo, C.M.H., Kowada, L.A.B.: Unitary Toric Classes, the Reality and Desire Diagram, and Sorting by Transpositions. SIAM J. Disc. Math. 24(3), 792–807 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kowada, L.A.B., Hausen, R.A., de Figueiredo, C.M.H.: Bounds on the Transposition Distance for Lonely Permutations. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds.) BSB 2010. LNCS, vol. 6268, pp. 35–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lu, L., Yang, Y.: A Lower Bound on the Transposition Diameter. SIAM J. Disc. Math. 24(4), 1242–1249 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Meidanis, J., Walter, M.E.M.T., Dias, Z.: Transposition distance between a permutation and its reverse. In: Proceedings of the 4th South American Workshop on String Processing, pp. 70–79. Carleton University Press, Valparaíso (1997)Google Scholar
  14. 14.
    Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene sort comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. 89(14), 6575–6579 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luís Felipe I. Cunha
    • 1
  • Luis Antonio B. Kowada
    • 2
  • Rodrigo de A. Hausen
    • 3
  • Celina M. H. de Figueiredo
    • 1
  1. 1.Universidade Federal do Rio de JaneiroBrazil
  2. 2.Universidade Federal FluminenseBrazil
  3. 3.Universidade de São PauloBrazil

Personalised recommendations