Abstraction for Model Checking Modular Interpreted Systems over ATL

  • Michael Köster
  • Peter Lohmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7217)


We present an abstraction technique for model checking multi-agent systems given as modular interpreted systems (\(\textsc{MIS}\) ) (introduced by Jamroga and Ågotnes). \(\textsc{MIS}\) allow for succinct representations of compositional systems, they permit agents to be removed, added or replaced and they are modular by facilitating control over the amount of interaction. Specifications are given as arbitrary \(\textsc{ATL}\) formulae: We can therefore reason about strategic abilities of groups of agents.

Our technique is based on collapsing each agent’s local state space with handcrafted equivalence relations, one per strategic modality. We present a model checking algorithm and prove its soundness: This makes it possible to perform model checking on abstractions (which are much smaller in size) rather than on the concrete system which is usually too complex, thereby saving space and time. We illustrate our technique with an example in a scenario of autonomous agents exchanging information.


Model Checking Abstraction Temporal and Strategic Logics Multiagent Systems Verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ball, T., Rajamani, S.: Boolean programs: A model and process for software analysis. Tech. Rep. 2010-14 (2000)Google Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  5. 5.
    Clarke, E., Grumberg, O., Peled, D.: Model checking. Springer (1999)Google Scholar
  6. 6.
    Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-agent systems. In: AAMAS (2), pp. 945–952 (2009)Google Scholar
  7. 7.
    Das, S., Dill, D.: Successive approximation of abstract transition relations. In: Proceedings of 16th Annual IEEE Symposium on Logic in Computer Science 2001, pp. 51–58. IEEE (2002)Google Scholar
  8. 8.
    Dechesne, F., Orzan, S., Wang, Y.: Refinement of Kripke Models for Dynamics. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 111–125. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  9. 9.
    Deiters, C., Köster, M., Lange, S., Lützel, S., Mokbel, B., Mumme, C., Niebuhr, D. (eds.): DemSy - A Scenario for an Integrated Demonstrator in a SmartCity. Tech. Rep. 2010/01, NTH Focused Research School for IT Ecosystems, Clausthal University of Technology (May 2010),
  10. 10.
    Emerson, E., Halpern, J.: “Sometimes” and ”not never” revisited: On branching versus linear time temporal logic. In: Proceedings of the Annual ACM Symposium on Principles of Programming Languages, vol. 33(1), pp. 151–178 (1986)Google Scholar
  11. 11.
    Enea, C., Dima, C.: Abstractions of Multi-agent Systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 11–21. Springer, Heidelberg (2007), CrossRefGoogle Scholar
  12. 12.
    Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems. Distributed Computing 3, 159–177 (1989), CrossRefMATHGoogle Scholar
  13. 13.
    Halpern, J., Fagin, R., Moses, Y., Vardi, M.: Reasoning about knowledge. Handbook of Logic in Artificial Intelligence and Logic Programming 4 (1995)Google Scholar
  14. 14.
    Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-Guided Control. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 886–902. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Majumdar, R., Mang, F.Y.C., Raskin, J.-F.: Abstract Interpretation of Game Properties. In: SAS 2000. LNCS, vol. 1824, pp. 220–240. Springer, Heidelberg (2000), CrossRefGoogle Scholar
  16. 16.
    Jamroga, W., Ågotnes, T.: Modular interpreted systems: A preliminary report. Tech. Rep. IfI-06-15, Clausthal University of Technology (2006)Google Scholar
  17. 17.
    Jamroga, W., Ågotnes, T.: Modular interpreted systems. In: Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) Proceedings of AAMAS 2007, pp. 892–899. ACM Press (2007)Google Scholar
  18. 18.
    Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model checking. ACM Trans. Program. Lang. Syst. 22, 87–128 (2000), CrossRefGoogle Scholar
  19. 19.
    Kurshan, R.: Computer-aided verification of coordinating processes: the automata-theoretic approach. Princeton Univ. Press (1994)Google Scholar
  20. 20.
    McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  21. 21.
    McMillan, K.: Symbolic model checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers Norwell, MA (1993)Google Scholar
  22. 22.
    Wooldridge, M.: Computationally grounded theories of agency. In: Proceedings of the Fourth International Conference on Multi-Agent Systems, ICMAS 2000 (2000),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Köster
    • 1
  • Peter Lohmann
    • 2
  1. 1.Computational Intelligence GroupClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Theoretical Computer ScienceLeibniz University HannoverHannoverGermany

Personalised recommendations