Strong Security Notions for Timed-Release Public-Key Encryption Revisited

  • Ryo Kikuchi
  • Atsushi Fujioka
  • Yoshiaki Okamoto
  • Taiichi Saito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7259)


Timed-release public-key encryption (TRPKE) provides a mechanism that a ciphertext cannot ordinarily be decrypted, even with its secret key, before a specific time. TRPKE with pre-open capability (TRPKE-PC) provides an additional mechanism where the sender can permit a receiver to decrypt the ciphertext before that specific time if necessary. A TRPKE(-PC) scheme should be secure in following aspects: against malicious receivers, a time-server, and, only in TRPKE-PC, against malicious senders. In this paper, we mention that previous security definitions are incomplete or insufficient, and propose new ones in all aspects of the above. We also present a generic construction of a TRPKE-PC scheme. Our construction provides the first TRPKE(-PC) scheme that is provably secure with respect to the above security definitions, especially against malicious key generations of the time-server.


timed-release encryption malicious time-server malicious key generation strong decryption generic construction pre-open capability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Au, M.H., Chen, J., Liu, J.K., Mu, Y., Wong, D.S., Yang, G.: Malicious KGC attack in certificateless cryptography. In: Proc. ACM Symposium on Information, Computer and Communications Security. ACM Press (2007)Google Scholar
  2. 2.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Barbosa, M., Farshim, P.: Relations among Notions of Complete Non-malleability: Indistinguishability Characterisation and Efficient Construction without Random Oracles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-Interactive Timed-Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chan, A.C.-F., Blake, I.F.: Scalable, Server-Passive, User-Anonymous Timed Release Public Key Encryption from Bilinear Pairing. In: 25th International Conference on Distributed Computing Systems, pp. 504–513. IEEE (2005), Full version of this paper is available at
  8. 8.
    Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 191–205. Springer, Heidelberg (2006), Full version of this paper is available at CrossRefGoogle Scholar
  9. 9.
    Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably Secure Timed-Release Public Key Encryption. ACM Trans. Inf. Syst. Secur. 11(2), 1–44 (2008)CrossRefGoogle Scholar
  10. 10.
    Chow, S.S.M., Roth, V., Rieffel, E.G.: General Certificateless Encryption and Timed-Release Encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Chow, S.S.M., Yiu, S.M.: Timed-Release Encryption Revisited. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 38–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Models. Int. J. Inf. Sec. 7(5), 349–377 (2008)CrossRefGoogle Scholar
  13. 13.
    Dent, A.W., Libert, B., Paterson, K.G.: Certificateless Encryption Schemes Strongly Secure in the Standard Model. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 344–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Dent, A.W., Tang, Q.: Revisiting the Security Model for Timed-Release Encryption with Pre-open Capability. In: Garay, J., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Fischlin, M.: Completely Non-malleable Schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 779–790. Springer, Heidelberg (2005), Full version of this paper is available at CrossRefGoogle Scholar
  17. 17.
    Fujioka, A., Okamoto, Y., Saito, T.: Security of Sequential Multiple Encryption. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 20–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Fujioka, A., Okamoto, Y., Saito, T.: Generic Construction of Strongly Secure Timed-Release Public-Key Encryption. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 319–336. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-Release Encryption with Pre-open Capability and Its Application to Certified E-mail System. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Hwang, Y.H., Liu, J.K., Chow, S.S.M.: Certificateless Public Key Encryption Secure against KGC Attacks in the Standard Model. Journal of Universal Computer Science, Special Issue on Cryptography in Computer System Security 14(3), 463–480 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kawai, Y., Sakai, Y., Kunihiro, N.: On the (Im)possibility Results for Strong Attack Models for Public Key Cryptsystems. Journal of Internet Services and Information SecurityJISISj Google Scholar
  25. 25.
    May, T.: Timed-Release Crypto (1993) (manuscript).Google Scholar
  26. 26.
    Matsuda, T., Nakai, Y., Matsuura, K.: Efficient Generic Constructions of Timed-Release Encryption with Pre-open Capability. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 225–245. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A Generic Construction of Timed-Release Encryption with Pre-open Capability. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 53–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Paterson, K.G., Quaglia, E.A.: Time-Specific Encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technology (1996)Google Scholar
  30. 30.
    Ventre, C., Visconti, I.: Completely Non-malleable Encryption Revisited. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Yang, P., Kitagawa, T., Hanaoka, G., Zhang, R., Matsuura, K., Imai, H.: Applying Fujisaki-Okamoto to Identity-Based Encryption. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 183–192. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the Security of Multiple Encryption or CCA-security+CCA-security=CCA-security? In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ryo Kikuchi
    • 1
  • Atsushi Fujioka
    • 1
  • Yoshiaki Okamoto
    • 2
  • Taiichi Saito
    • 2
  1. 1.NTT Information Sharing Platform LaboratoriesJapan
  2. 2.Tokyo Denki UniversityJapan

Personalised recommendations