Skip to main content

Analysis of Trivium Using Compressed Right Hand Side Equations

  • Conference paper
Information Security and Cryptology - ICISC 2011 (ICISC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7259))

Included in the following conference series:

Abstract

We study a new representation of non-linear multivariate equations for algebraic cryptanalysis. Using a combination of multiple right hand side equations and binary decision diagrams, our new representation allows a very efficient conjunction of a large number of separate equations. We apply our new technique to the stream cipher Trivium and variants of Trivium reduced in size. By merging all equations into one single constraint, manageable in size and processing time, we get a representation of the Trivium cipher as one single equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007), http://www.ecrypt.eu.org/stream

  2. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations. Designs, Codes and Cryptography 49(1), 147–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Raddum, H.: MRHS Equation Systems. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 232–245. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Semaev, I.: Sparse algebraic equations over finite fields. SIAM Journal on Computing 39(2), 388–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akers, S.: Binary decision diagrams. IEEE Transactions on Computers 27(6), 509–516 (1978)

    Article  MATH  Google Scholar 

  8. Somenzi, F.: Binary decision diagrams. In: Calculational System Design. NATO Science Series F: Computer and Systems Sciences, vol. 173, pp. 303–366. IOS Press (1999)

    Google Scholar 

  9. Knuth, D.: The Art of Computer Programming. vol. 4, Fascicles 0-4, The Art of Computer Programming. Addison Wesley (PEAR) (2009)

    Google Scholar 

  10. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Stegemann, D.: Extended BDD-Based Cryptanalysis of Keystream Generators. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 17–35. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  13. Cannière, C.D., Preneel, B.: Trivium specifications. ECRYPT Stream Cipher Project (2005)

    Google Scholar 

  14. Somenzi, F.: CUDD: CU Decision Diagram Package (2009), http://vlsi.colorado.edu/~fabio/CUDD/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schilling, T.E., Raddum, H. (2012). Analysis of Trivium Using Compressed Right Hand Side Equations. In: Kim, H. (eds) Information Security and Cryptology - ICISC 2011. ICISC 2011. Lecture Notes in Computer Science, vol 7259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31912-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31912-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31911-2

  • Online ISBN: 978-3-642-31912-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics