Oppositions in Rough Set Theory

  • Davide Ciucci
  • Didier Dubois
  • Henri Prade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7414)


The role of opposition in rough set theory is laid bare. There are two sources which generate oppositions in rough sets: approximations and relations. In the former case, we outline a hexagon and a cube of oppositions. In the second case, we define a classical square of oppositions and also a tetrahedron when considering the standpoint of two agents.


Information Table Formal Concept Analysis Possibility Theory Paraconsistent Logic Variable Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): The Square of Opposition (2010),
  2. 2.
    Béziau, J.Y., Payette, G.: Preface. Special issue on the square of opposition. Logica Universalis 2, 1 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Béziau, J.Y., Payette, G. (eds.): Handbook of the Second World Congress on the Square of Opposition. Peter Lang, Pieterlen (2012)Google Scholar
  4. 4.
    Blanché, R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  5. 5.
    Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic BZ lattices). Studia Logica 58, 47–77 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ciucci, D.: Approximation algebra and framework. Fundamenta Informaticae 94(2), 147–161 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ciucci, D.: Orthopairs: A simple and widely usedway to model uncertainty. Fundamenta Informaticae 108(3-4), 287–304 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowinski, R. (ed.) Intelligent Decision Support – Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  9. 9.
    Dubois, D., Prade, H.: From Blanché hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Universalis, 1–21 (in press, 2012),
  10. 10.
    Katzberg, J., Ziarko, W.: Variable precision extension of rough sets. Fundamenta Informaticae 27, 155–168 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Khan, M. A., Banerjee, M.: A Study of Multiple-Source Approximation Systems. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 46–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lin, T.Y., Huang, K.J., Liu, Q., Chen, W.: Rough sets, neighborhood systems and approximation. In: Proceedings of the Fifth International Symposium on Methodologies of Intelligent Systems, Selected Papers, pp. 130–141 (1990)Google Scholar
  13. 13.
    Pawlak, Z.: Information systems - theoretical foundations. Information Systems 6, 205–218 (1981)zbMATHCrossRefGoogle Scholar
  14. 14.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Radzikowska, A., Kerre, E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Słowinski, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft-Computing, vol. IV, pp. 17–33. Duke University Press, Durham (1997)Google Scholar
  18. 18.
    Yao, J.T., Yao, Y., Ziarko, W.: Probabilistic rough sets: Approximations, decision-makings, and applications. Int. J. Approx. Reasoning 49(2), 253–254 (2008)CrossRefGoogle Scholar
  19. 19.
    Yao, Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Davide Ciucci
    • 1
    • 2
  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.IRITUniversité Paul SabatierToulouse cedex 9France
  2. 2.DISCoUniversità di Milano – BicoccaMilanoItalia

Personalised recommendations