Advertisement

Evidential Clustering or Rough Clustering: The Choice Is Yours

  • Manish Joshi
  • Pawan Lingras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7414)

Abstract

A crisp cluster does not share an object with other clusters. But in real life situations for several applications such rigidity is not acceptable. Hence, Fuzzy and Rough variations of a popular K-means algorithm are proposed to obtain non-crisp clustering solutions.

An Evidential c-means proposed by Masson and Denoeux [6] in the theoretical framework of belief functions uses Fuzzy c-means (FCM) to build upon basic belief assignments to determine cluster membership. On the other hand, Rough clustering uses the concept of lower and upper approximation to synthesize clusters. A variation of popular K-means algorithm namely Rough k-means (RKM) is proposed and experimented with various datasets.

In this paper we analyzed both the algorithms using synthetic, real and standard datasets to determine similarities of these two clustering approaches and focused on the strengths of each approach.

Keywords

Rough Clustering Fuzzy Clustering Rough k-means Fuzzy c-means belief functions Evidential c-means 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek, J.C., Hathaway, R.J.: Optimization of fuzzy clustering criteria using genetic algorithms. In: International Conference on Evolutionary Computation, pp. 589–594 (1994)Google Scholar
  2. 2.
    Dave, R.N.: Clustering relational data containing noise and outliers. Pattern Recogn. Lett. 12, 657–664 (1991)CrossRefGoogle Scholar
  3. 3.
    Joshi, A., Krishnapuram, R.: Robust fuzzy clustering methods to support web mining. In: Proc. Workshop in Data Mining and knowledge Discovery, SIGMOD, pp. 15–22 (1998)Google Scholar
  4. 4.
    Joshi, M., Lingras, P., Rao, C.R.: Analysis of Rough and Fuzzy Clustering. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 679–686. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Lingras, P., West, C.: Interval set clustering of web users with rough k-means. Journal of Intelligent Information Systems 23, 5–16 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Masson, M., Denoeux, T.: Ecm: An evidential version of the fuzzy c-means algorithm. Pattern Recognition 41, 1384–1397 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision. IEEE Transactions on Systems, Man, and Cybernetics, Part B 27(5), 787–795 (1997)CrossRefGoogle Scholar
  8. 8.
    Peters, G.: Some refinements of rough k-means clustering. Pattern Recognition 39(8), 1481–1491 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manish Joshi
    • 1
  • Pawan Lingras
    • 2
  1. 1.Department of Computer ScienceNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of Mathematics and Computing ScienceSaint Mary’s UniversityHalifaxCanada

Personalised recommendations