Advertisement

A New Intuitionistic Fuzzy Rough Set Approach for Decision Support

  • Junyi Chai
  • James N. K. Liu
  • Anming Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7414)

Abstract

The rough set theory was proved of its effectiveness in dealing with the imprecise and ambiguous information. Dominance-based Rough Set Approach (DRSA), as one of the extensions, is effective and fundamentally important for Multiple Criteria Decision Analysis (MCDA). However, most of existing DRSA models cannot directly examine uncertain information within rough boundary regions, which might miss the significant knowledge for decision support. In this paper, we propose a new believe factor in terms of an intuitionistic fuzzy value as foundation, further to induce a kind of new uncertain rule, called believable rules, for better performance in decision-making. We provide an example to demonstrate the effectiveness of the proposed approach in multicriteria sorting and also a comparison with existing representative DRSA models.

Keywords

Multicriteria decision analysis Rough set Intuitionistic fuzzy set Rule-based approach Sorting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blaszczynski, J., Greco, S., Slowinski, R.: Multi-criteria classification: a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181, 1030–1044 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chai, J.Y., Liu, J.N.K.: Class-based rough approximation with dominance principle. In: Proceedings of IEEE International Conference on Granular Computing (GrC), pp. 77–82 (2011)Google Scholar
  4. 4.
    Chai, J.Y., Liu, J.N.K., Xu, Z.S.: A new rule-based SIR approach to supplier selection under intuitionistic fuzzy environments. International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems 20(3) (2012)Google Scholar
  5. 5.
    Chang, B., Hung, H.F.: A study of using RST to create the supplier selection model and decision-making rules. Expert Systems with Applications 37, 8284–8295 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cyran, K.A.: Quasi Dominance Rough Set Approach in Testing for Traces of Natural Selection at Molecular Level. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 163–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Greco, S., Matarazzo, B., Slowinski, R.: Decision rule approach. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–561. Springer, Berlin (2005)Google Scholar
  9. 9.
    Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set approach and attribute reduction. International Journal of Approximate Reasoning 50, 1199–1214 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems 15, 1179–1187 (2007)CrossRefGoogle Scholar
  12. 12.
    Xu, Z.S., Cai, X.Q.: Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optimization and Decision Making 9(4), 359–381 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Zhang, Z.W., Shi, Y., Gao, G.X.: A rough set-based multicriteria criteria linear programming approach for the medical diagnosis and prognosis. Expert Systems with Applications 36(5), 8932–8937 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Junyi Chai
    • 1
  • James N. K. Liu
    • 1
  • Anming Li
    • 1
  1. 1.Department of ComputingThe Hong Kong Polytechnic UniversityKowloonHong Kong SAR

Personalised recommendations