Advertisement

D-Xylitol pp 205-225 | Cite as

Bioenergetic Aspects of Xylitol Production from Lignocellulosic Materials

  • Attilio ConvertiEmail author
  • Patrizia Perego
  • José Manuel Domínguez González
  • Janaína Teles de Faria
  • Fábio Coelho Sampaio
Chapter

Abstract

With the aim of identifying the best experimental conditions able to optimize the industrial production of xylitol from lignocellulosic materials, this chapter provides a review about the present knowledge on the use of material and bioenergetic balances implied in xylose-to-xylitol bioconversion by yeasts. To this purpose, xylose metabolism was investigated in three different pentose-metabolizing yeasts, namely, Pachysolen tannophilus, Candida guilliermondii and Debaryomyces hansenii, using different lignocellulosic hydrolyzates as carbon and energy sources. The main hypotheses on which material and bioenergetic balances were based are (a) fermentative assimilation of xylose, (b) semi-aerobic xylose-to-xylitol bioconversion, (c) biomass growth from pentoses, (d) catabolic oxidation of xylose and (e) NADH regeneration by the electron transport system. Similar approaches could be proposed to investigate and model other semi-aerobic processes.

Keywords

Material balances Bioenergetics Xylitol production Lignocellulosics Yeasts 

References

  1. Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioproc Eng 22:219–225CrossRefGoogle Scholar
  2. Barbosa MFS, Medeiros MB, Mancilha IM, Schneider H, Lee H (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251CrossRefGoogle Scholar
  3. Bruinenberg PM, van Dijken JP, Scheffers WA (1983) A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129:953–964Google Scholar
  4. Carvalho W, Silva SS, Converti A, Vitolo M (2002) Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79:165–169PubMedCrossRefGoogle Scholar
  5. Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti A (2005) Xylitol production from sugarcane bagasse hydrolysate. Metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31CrossRefGoogle Scholar
  6. Converti A, Domínguez JM (2001) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii. Biotechnol Bioeng 75:39–45PubMedCrossRefGoogle Scholar
  7. Converti A, Perego P, Domínguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21:719–723CrossRefGoogle Scholar
  8. Converti A, Perego P, Domínguez JM, Silva SS (2001) Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzym Microb Technol 28:339–345CrossRefGoogle Scholar
  9. Converti A, Perego P, Sordi A, Torre P (2002) Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii. The use of carbon material balances. Appl Biochem Biotechnol 101:15–29PubMedCrossRefGoogle Scholar
  10. Domínguez JM, Gong CS, Tsao G (1997) Production of xylitol from d-xylose by Debaryomyces hansenii. Appl Biochem Biotechnol 63–65:117–127PubMedCrossRefGoogle Scholar
  11. Domínguez JM, Rivas B, Torre P, Converti A, Parajó JC (2005) Proceso para la purificación de xilitol contenido en medios fermentados obtenidos por bioconversión de hidrolizados de biomasa vegetal. Spanish Patent P200502866, 24 Nov 2005Google Scholar
  12. Gaden EL Jr (1959) Fermentation process kinetics. J Biochem Microbiol Technol Eng 1:413–429CrossRefGoogle Scholar
  13. Gárdonyi M, Ősterberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52PubMedCrossRefGoogle Scholar
  14. Gírio FM, Peito MA, Amaral-Collaço MT (1989) Xylitol production by fungi. Enzymatic and physiological study of d-xylose metabolism by Candida shehatae. Appl Microbiol Biotechnol 32:199–204CrossRefGoogle Scholar
  15. Gírio FM, Peito MA, Amaral-Collaço MT (1990) Xylitol production by fungi. An enzymatic test for screening good xylitol-producer fungi. In: Grassi G, Gosse G, dos Santos G (eds) Biomass for energy and industry. Elsevier, AmsterdamGoogle Scholar
  16. Gírio FM, Roseiro JC, Sá-Machado P, Duarte-Reis AR, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzym Microb Technol 16:1074–1078CrossRefGoogle Scholar
  17. Gírio FM, Pelica F, Amaral-Collaço MT (1996) Characterization of xylitol dehydrogenase from Debaryomyces hansenii. Appl Biochem Biotechnol 56:79–87CrossRefGoogle Scholar
  18. Gírio FM, Amaro C, Azinheira H, Pelica F, Amaral-Collaço MT (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresour Technol 71:245–251CrossRefGoogle Scholar
  19. Granström T, Leisola M (2002) Controlled transient changes reveal differences in metabolite production in two Candida yeasts. Appl Microbiol Biotechnol 58:511–516PubMedCrossRefGoogle Scholar
  20. Granström TB, Aristidou AA, Jokela J, Leisola M (2000) Growth characteristics and metabolic flux analysis of Candida milleri. Biotechnol Bioeng 70:197–207PubMedCrossRefGoogle Scholar
  21. Granström T, Airaksinen U, Wu XY, Leisola M (2002) Candida guilliermondii grows on rare pentoses—implications on production of pure xylitol. Biotechnol Lett 24:507–510CrossRefGoogle Scholar
  22. van Gulik WM, Heijnen JJ (1995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng 48:681–698PubMedCrossRefGoogle Scholar
  23. van Gulik WM, De Laat WTAM, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68:602–618PubMedCrossRefGoogle Scholar
  24. Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzym Microb Technol 16:933–943CrossRefGoogle Scholar
  25. Harris DM, Diderich JA, van der Krogt ZA, Luttik MAH, Raamsdonk LM, Bovenberg RAL, van Gulik WM, van Dijken JP, Pronk JT (2006) Enzymic analysis of NADPH metabolism in β-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase. Metab Eng 8:91–101PubMedCrossRefGoogle Scholar
  26. Jørgensen H, Nielsen J, Villadsen J, Møllgaard H (1995) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol Bioeng 46:117–131PubMedCrossRefGoogle Scholar
  27. Kilian SG, van Uden N (1998) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548Google Scholar
  28. Kilian SG, Prior BA, du Preez JC (1993) The kinetics and regulation of d-xylose transport in Candida utilis. Word J Microbiol Biotechnol 9:357–360CrossRefGoogle Scholar
  29. Larsson C, von Stockar U, Marison I, Gustafsson L (1995) Metabolic uncoupling in Saccharomyces cerevisiae. Thermochim Acta 251:99–110CrossRefGoogle Scholar
  30. Liu Y (1996) Bioenergetic interpretation on the S o /X o ratio in substrate-sufficient batch culture. Wat Resour 30:2766–2770CrossRefGoogle Scholar
  31. Lucas C, van Uden N (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495CrossRefGoogle Scholar
  32. Mignone CF, Donati ER (2004) ATP requirements for growth and maintenance of iron-oxidizing bacteria. Biochem Eng J 18:211–216CrossRefGoogle Scholar
  33. Nobre A, Lucas C, Leão C (1999) Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65:3594–3598PubMedGoogle Scholar
  34. Nobre A, Duarte LC, Roseiro JC, Gírio FM (2002) A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats. Appl Microbiol Biotechnol 59:509–516PubMedCrossRefGoogle Scholar
  35. Nolleau V, Preziosi-Belloy L, Navarro JM (1995) The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis: incidence of oxygen and pH. Biotechnol Lett 17:417–422CrossRefGoogle Scholar
  36. Oh DK, Kim SY (1998) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50:419–425PubMedCrossRefGoogle Scholar
  37. Oh D-K, Kim S-Y, Kim J-H (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58:440–444PubMedCrossRefGoogle Scholar
  38. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microb Mol Biol Rev 64:34–50CrossRefGoogle Scholar
  39. Parajó JC, Domínguez H, Domínguez JM (1998a) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201CrossRefGoogle Scholar
  40. Parajó JC, Domínguez H, Domínguez JM (1998b) Biotechnological production of xylitol. Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65:203–212CrossRefGoogle Scholar
  41. Parajó JC, Domínguez H, Domínguez JM (1998c) Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour Technol 66:25–40CrossRefGoogle Scholar
  42. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond Ser B 163:224–231CrossRefGoogle Scholar
  43. Rivas B, Domínguez JM, Domínguez H, Parajó JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzym Microb Technol 31:431–438CrossRefGoogle Scholar
  44. Rivas B, Torre P, Domínguez JM, Perego P, Converti A, Parajó JC (2003) Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnol Progr 19:706–713CrossRefGoogle Scholar
  45. Rivas B, Torre P, Domínguez JM, Converti A, Parajó JC (2006) Purification of xylitol obtained by fermentation of corncob hydrolysates. J Agric Food Chem 54:4430–4435PubMedCrossRefGoogle Scholar
  46. Rivas B, Torre P, Domínguez JM, Converti A (2009) Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate. Biotechnol Bioeng 102:1062–1073PubMedCrossRefGoogle Scholar
  47. Roberto IC, Mancilha IM, Sato S (1999) Kinetics of xylitol fermentation by Candida guilliermondii grown on rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol 77:205–210CrossRefGoogle Scholar
  48. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical, AmsterdamGoogle Scholar
  49. Roseiro JC, Peito MA, Gírio FM, Amaral-Collaço MT (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490Google Scholar
  50. Sampaio FC, Torre P, Passos FML, Perego P, Passos FJV, Converti A (2004) Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol Progr 20:1641–1650CrossRefGoogle Scholar
  51. Sampaio FC, Mantovani HC, Passos FJV, Moraes CA, Converti A, Passos FML (2005) Bioconversion of d-xylose to xylitol by Debaryomyces hansenii UFV-170: product formation versus growth. Proc Biochem 40:3600–3606CrossRefGoogle Scholar
  52. Sampaio FC, Moraes CA, De Faveri D, Perego P, Converti A, Passos FML (2006) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Proc Biochem 41:675–681CrossRefGoogle Scholar
  53. Sampaio FC, Chaves-Alves VM, Converti A, Passos FML, Coelho JLC (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour Technol 99:502–508PubMedCrossRefGoogle Scholar
  54. Santos JC, Carvalho W, Silva SS, Converti A (2003) Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flowrate. Biotechnol Progr 19:1210–1215CrossRefGoogle Scholar
  55. Saraçoğlu NE, Çavuşoğlu H (1999) Fermentative performance of Candida tropicalis Kuen 1022 yeast for d-xylose and sunflower seed hull hydrolysate in xylitol production. Tr J Eng Environ Sci 23:433–438Google Scholar
  56. Sene L, Converti A, Zilli M, Felipe MGA, Silva SS (2001) Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolysate. Appl Microbiol Biotechnol 57:738–743PubMedCrossRefGoogle Scholar
  57. Shuler ML, Kargi F (2002) Recovery and purification of products. In: Acrivos A, Dahler J, Fogler HS, Hanratty TJ, Prausnitz JM, Scriven LE (eds) Bioprocess engineering basic concepts, 2nd edn. Prentice-Hall Inc, HoustonGoogle Scholar
  58. Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferment Bioeng 80:565–570CrossRefGoogle Scholar
  59. Stouthamer AH, Bettenhaussen CW (1973) Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim Biophys Acta 301:53–70PubMedCrossRefGoogle Scholar
  60. Tran LH, Yogo M, Ojima H, Idota O, Kawai K, Suzuki T, Takamizawa K (2004) The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol Bioproc Eng 9:223–228CrossRefGoogle Scholar
  61. Tsai SP, Lee YH (1990) A model for energy-sufficient culture growth. Biotechnol Bioeng 35:138–145PubMedCrossRefGoogle Scholar
  62. Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers A (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677PubMedGoogle Scholar
  63. Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Bôas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442PubMedCrossRefGoogle Scholar
  64. Zeng A-P, Deckwer W-D (1995) A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol Prog 11:71–79PubMedCrossRefGoogle Scholar
  65. Zeng A-P, Ross A, Deckwer W-D (1990) A method to estimate the efficiency of oxidative phosphorylation and biomass yield from ATP of a facultative anaerobe in continuous culture. Biotechnol Bioeng 36:965–969PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Attilio Converti
    • 1
    Email author
  • Patrizia Perego
    • 1
  • José Manuel Domínguez González
    • 2
  • Janaína Teles de Faria
    • 3
  • Fábio Coelho Sampaio
    • 4
  1. 1.Department of Chemical and Process EngineeringGenoa UniversityGenoaItaly
  2. 2.Department of Chemical EngineeringPolytechnical Building, Vigo UniversityOurenseSpain
  3. 3.Department of Food TechnologyFederal University of ViçosaViçosaBrazil
  4. 4.Department of PharmacyFederal University of Vales do Jequitinonha e MucriDiamantinaBrazil

Personalised recommendations