D-Xylitol pp 193-204 | Cite as

Enzymatic Production of Xylitol: Current Status and Future Perspectives

  • Ricardo de Freitas BrancoEmail author
  • Anuj K. Chandel
  • Sílvio Silvério da Silva


Enzymatic production of bio-active compounds has several advantages over chemical synthesis. Enzymatic mediated reactions are generally considered safe, highly reproducible, economical and environmentally benign. Microbial mediated xylose fermentation for xylitol production is a conventional approach with several process complexities. Enzymatic conversion of xylose into xylitol offers a promising alternative towards the commercial production of xylitol on a large scale. This chapter will discuss enzymatic production (or in vitro) of xylitol with emphasis on enzymatic catalysis using coenzymes and their enzymatic regeneration methods. Furthermore, mechanisms of the enzymatic process, operational details, advantages and disadvantages in comparison with the traditional production methods of xylitol (chemical and microbial) have been discussed at length. Special emphasis is placed on the sustainable raw material alternatives for enzymatic production of xylitol using sugarcane bagasse as the main carbohydrate source.


Enzymatic synthesis Xylitol Xylose reductase Sugarcane bagasse Multi-enzymes 



The authors gratefully acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant n 2005/02840-0 and 2005/02866-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.


  1. Aksu S, Arends IWCE, Hollmanna F (2009) A new regeneration system for oxidized nicotinamide cofactors. Adv Synth Catal 351:1211–1216CrossRefGoogle Scholar
  2. Baea SM et al (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microbial Technol 35:545–549CrossRefGoogle Scholar
  3. Barbosa MFS et al (1988) Screening of yeasts for production of xylitol from d-xylose and same factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251CrossRefGoogle Scholar
  4. Baudel HM, Zaror C, Abreu CAM (2005) Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Ind Crop Prod 21:309–315Google Scholar
  5. Bon EPS, Ferrara MA, Corvo ML (2008) Enzimas em Biotecnologia - Produção, Aplicação e Mercado (Enzymes in biotechnology: production, application and market). Interciência, Rio de JaneiroGoogle Scholar
  6. Branco RF et al (2007) Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochem 42:258–262CrossRefGoogle Scholar
  7. Branco RF, Santos JC, Silva SS (2011a) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenerg 35:3241–3246CrossRefGoogle Scholar
  8. Branco RF, Santos JC, Silva SS (2011b) A solid and sobust model for xylitol enzymatic production optimization. J Bioproces Biotechniques 1:1–6Google Scholar
  9. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204CrossRefGoogle Scholar
  10. Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol 89:1289–1303CrossRefPubMedGoogle Scholar
  11. Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2011a) The realm of cellulases in biorefinery development. Crit Rev Biotechnol. doi: 10.3109/07388551.2011.595385 PubMedGoogle Scholar
  12. Chandel AK et al (2011b) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20CrossRefGoogle Scholar
  13. Chandel AK, Silva SS, Carvalho W and Singh OV (2012) Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20Google Scholar
  14. Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic-synthesis. Appl Biochem Biotechnol 14:147–197CrossRefPubMedGoogle Scholar
  15. CONAB – Compania Nacional de Abastecimento (National supply company). Third survey of sugarcane sugar production, in Dec 2011. Available in
  16. Cortez EV (2002) Extração líquido-líquido de xilose redutase e xilitol desidrogenase por micelas reversas. Thesis, Universidade de São PauloGoogle Scholar
  17. Cortez EV et al (2004) Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate. J Chromatogr B 807:47–54CrossRefGoogle Scholar
  18. Crognale S et al (2008) Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enzym Microbial Technol 42:445–449CrossRefGoogle Scholar
  19. Dawson M, Dixon T, Inkerman P (1990) Moisture loss from baled bagasse during storage. In: Proceedings of the Australian Society of Sugarcane Technologists 1990, pp 199–206Google Scholar
  20. Eguchi SY, Nishio N, Nagai S (1983) NADPH production from NADP+ by a formate-utilizing methanogenic bacterium. Agric Biol Chem 47:2941–2943CrossRefGoogle Scholar
  21. Faria LFF, Pereira JRN, Nobrega R (2002) Xylitol production from d-xylose in a membrane bioreactor. Desalination 149:231–236CrossRefGoogle Scholar
  22. Fernandes P (2010) Miniaturization in biocatalysis. Int J Mol Sci 11:858–879CrossRefPubMedGoogle Scholar
  23. Frollini E, Pimenta MJA (1997) Lignin: utilization as a macromonomer in the synthesis of phenolic type resins. Anais da Associação Brasileira de Quimica (Anals Brazilian Chem Assoc) 46:43–49Google Scholar
  24. Itoh N, Mizuguchi N, Mabuchi M (1999) Production of chiral alcohols by enantioselective reduction with NADH-dependent phenylacetaldehyde reductase from Corynebacterium strain, ST-10. J Mol Catal B Enzym 6:41–50Google Scholar
  25. Kitpreechavanich V et al (1984) Conversion of d-xylose into xylitol by xylose redutase from Candida pelliculosa coupled with the oxiredutase system of methanogen strain Hu. Biotechnol Lett 6:651–656CrossRefGoogle Scholar
  26. Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B (2004) Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Biochemistry 43:4944–4954CrossRefPubMedGoogle Scholar
  27. Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126CrossRefPubMedGoogle Scholar
  28. Kula MR (1994) Enzyme catalyzed reductions of carbonyl groups. In: Gani R, Jorgensen S (eds) Proceedings of the Chiral Europe 1994 symposium, pp 27–33Google Scholar
  29. Kumari M, Chandel AK, Edula JR, Chandrasekhar G, Narasu ML, Rao LV (2009) Value-added enzymes: production technologies and commercialization. BioTechnol An Ind J 15:20–32Google Scholar
  30. Li Y, Ogolah HSO, Sawa Y (2012) l-Aspartate dehydrogenase: features and applications. Appl Microbiol Biotechnol 93:503–516CrossRefPubMedGoogle Scholar
  31. Lima UA, Aquarone E, Borzani W, Schmidell W (2001) Biotecnologia industrial, vol 2. Edgard Blucher, São PauloGoogle Scholar
  32. Mayr P, Nidetzky B, Klimacek M (2001) Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Biochemistry 40:10371–10381CrossRefPubMedGoogle Scholar
  33. Mertens R et al (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B Enzym 24–25:39–52CrossRefGoogle Scholar
  34. Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD (1996) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396CrossRefPubMedGoogle Scholar
  35. Pandey A et al (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Biores Technol 74:69–80Google Scholar
  36. Rawat UB, Rao MB (1996) Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochem Biophysic Acta 1293:222–230CrossRefGoogle Scholar
  37. Ruppert R, Herrmann S, Steckhan E (1988) Very efficient reduction of NAD(P)+ with formate catalyzed by cationic rhodium complexes. J Chem Soc Chem Commun 17:1150–1151CrossRefGoogle Scholar
  38. Sampaio FC et al (2006) Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170. J Food Eng 76:376–386CrossRefGoogle Scholar
  39. Santos JC et al (2005) Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochem 40:113–118CrossRefGoogle Scholar
  40. Seelbach K et al (1996) A novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 37:1377–1380CrossRefGoogle Scholar
  41. Silva SS, Vitolo M, Pessoa A Jr, Felipe MGA (1996) Xylose reductase and xylitol dehydrogenase activities of d-xylose-xylitol-fermenting Candida guilliermondii. J Basic Microbiol 36:88–95CrossRefGoogle Scholar
  42. Silva SS et al (2003) Use of fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem 38:903–907CrossRefGoogle Scholar
  43. Suzuki T et al (1999) Expression of xyrA gene encoding for d-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J Biosci Bioeng 87:280–284CrossRefPubMedGoogle Scholar
  44. Wilson DK, Kavanagh KL, Klimacek M, Nidetzky B (2003) The xylose reductase (AKR2B5) structure: homology and divergence from other aldo/keto reductases and opportunities for protein engineering. Chem-Biol Inter 143(144):515–521CrossRefGoogle Scholar
  45. Woodyer R, Simurdiak M, van Der Donk WA, Zhao H (2005) Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71:1642–1647CrossRefPubMedGoogle Scholar
  46. Yokoyama SI et al (1995) Purification, characterization and structure analysis of NADPH-dependent d-xylose reductases from Candida tropicalis. J Ferment Bioeng 79:211–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ricardo de Freitas Branco
    • 1
    Email author
  • Anuj K. Chandel
    • 2
  • Sílvio Silvério da Silva
    • 2
  1. 1.Campus Pato Branco, Coordenação de Química—COQUIUniversidade Tecnológica Federal do Paraná—UTFPRPato BrancoBrazil
  2. 2.Departamento de Biotecnologia-LOT, Estrada municipal do campinho s/n, Escola de Engenharia de Lorena-USP-EELUniversidade de São PauloSão PauloBrazil

Personalised recommendations