Advertisement

D-Xylitol pp 161-191 | Cite as

Fermentation Strategies Explored for Xylitol Production

  • José Manuel SalgadoEmail author
  • Attilio Converti
  • José Manuel Domínguez
Chapter

Abstract

This chapter reviews different fermentation strategies for xylitol production using synthetic media or hemicellulosic hydrolyzates as carbon source. Most of the published works were carried out with free cells in batch operation because of its versatility and easy use in preliminary tests, where the age of inoculum, cell recycling, initial cell concentration, pH, temperature, type and concentration of nutrients in the culture medium, initial xylose concentration, presence of carbon sources other than xylose, and dissolved oxygen level were selected as the main variables. Conversely, continuous fermentation systems were shown to offer additional advantages such as high productivity for long periods of time, elimination of idle time for cleaning and sterilization and simplicity to perform an automated control. The most attractive equipment employed for this purpose included the continuous flow stirred tank, crossflow membrane and submerged membrane bioreactors. The use of cells immobilized by adsorption, entrapment, or covalent binding showed several advantages compared to the free ones, including higher cell density and possible biomass recycling for continuous operation. Repeated-batch fermentations were also investigated to evaluate the durability of immobilized cells with the aim of implementing the technology into a continuous process or scaling up the conversion of xylose to xylitol. Seeking long-term stability, the packed bed and fluidized bed bioreactors proved to be the most effective equipment; however, their hydrodynamic characteristics and the influence of aeration rate on fermentation performance still deserve further efforts. Finally, the fed-batch process, mainly with free cells, was also reported as an effective tool to keep the substrate at a suitable level throughout the whole fermentation process.

Keywords

Batch systems Continuous fermentation Fed-batch systems Immobilization Packed bed reactors Fluidized bed reactors 

References

  1. Aguiar WB, Faria LFF, Couto MAPG, Araújo OQF, Pereira Jr. N (2002) Growth model and prediction of oxygen transfer rate for xylitol production from d-xylose by C. guilliermondii. Biochem Eng J 12:49–59Google Scholar
  2. Akinterinwa O, Cirino PC (2009) Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11:48–55PubMedCrossRefGoogle Scholar
  3. Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioproc Eng 22:219–225CrossRefGoogle Scholar
  4. Audet P, Lacroix C, Paquin C (1991) Continuous fermentation of a supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. Thermophilicus. Int Dairy J 1:1–15CrossRefGoogle Scholar
  5. Barbosa MFS, Medeiros MB, Mancilha IM, Schneider H, Lee H (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251CrossRefGoogle Scholar
  6. Baudel HM, Abreu CAM, Zaror CZ (2005) Xylitol production via catalytic hydrogenation of sugarcane bagasse dissolving pulp liquid effluents over Ru/C catalyst. J Chem Technol Biotechnol 80:230–233CrossRefGoogle Scholar
  7. Béjar P, Casas C, Godia F, Solà C (1992) The influence of physical properties on the operation of a three phase fluidized bed fermentor with yeast cells immobilized in Ca-alginate. Appl Biochem Biotechnol 34–35(1):467–475CrossRefGoogle Scholar
  8. Cao NJ, Tang R, Gong CS, Chen LF (1994) The effect of cell density on the production of xylitol from d-xylose by yeast. Appl Biochem Biotechnol 45–46:515–519PubMedCrossRefGoogle Scholar
  9. Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, Tsao GT (1996) Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett 18:1013–1018CrossRefGoogle Scholar
  10. Carvalho W, Da Silva SS, Vitolo M, De Mancilha IM (2000) Use of immobilized Candida cells on xylitol production from sugarcane bagasse. Z Naturforsch C 55(3–4):213–217PubMedGoogle Scholar
  11. Carvalho W, Silva SS, Converti A, Vitolo M (2002a) Metabolic behavior of immobilized cells of Candida guilliermondii during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79:165–169PubMedCrossRefGoogle Scholar
  12. Carvalho W, Silva SS, Vitolo M, Felipe MGA, Mancilha IM (2002b) Improvement in xylitol production from sugarcane bagasse hydrolyzate achieved by the use of a repeated-batch immobilized cell system. Z Naturforsch C 57(1–2):109–112PubMedGoogle Scholar
  13. Carvalho W, Silva SS, Converti A, Vitolo M, Felipe MGA, Roberto IC, Silva MB, Mancilha IM (2002c) Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolyzate: cell immobilization conditions. Appl Biochem Biotechnol 98–100:489–496PubMedCrossRefGoogle Scholar
  14. Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti (2005) A Xylitol production from sugarcane bagasse hydrolyzate. Metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31Google Scholar
  15. Carvalho W, Canilha L, Silva SS (2008) Semi-continuous xylose to xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioproc Biosyst Eng 31:493–498CrossRefGoogle Scholar
  16. Chen LF, Gong CS (1985) Fermentation of sugarcane bagasse hemicellulose hydrolyzate to xylitol by a hydrolyzate-acclimatized yeast. J Food Sci 50:226–228CrossRefGoogle Scholar
  17. Choi JH, Moon KH, Ryu YW, Seo JH (2000) Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnol Lett 22:1625–1628CrossRefGoogle Scholar
  18. Converti A, Domínguez JM (2001) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii. Biotechnol Bioeng 75:39–45PubMedCrossRefGoogle Scholar
  19. Converti A, Perego P, Domínguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21:719–723CrossRefGoogle Scholar
  20. Converti A, Perego P, Domínguez JM, Silva SS (2001) Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzyme Microb Technol 28:339–345PubMedCrossRefGoogle Scholar
  21. Converti A, Perego P, Sordi A, Torre P (2002) Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii: the use of carbon material balances. Appl Biochem Biotechnol 101:15–29PubMedCrossRefGoogle Scholar
  22. Converti A, Torre P, De Luca E, Perego P, Del Borghi M, Silva SS (2003) Continuous xylitol production from synthetic xylose solutions by Candida guilliermondii: influence of pH and temperature. Eng Life Sci 3:193–198CrossRefGoogle Scholar
  23. Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2000a) Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol 14:79–97CrossRefGoogle Scholar
  24. Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2000b) Xylitol production from barley bran hydrolyzates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22:1895–1898CrossRefGoogle Scholar
  25. Cunha MAA, Converti A, Santos JC, Silva SS (2006) Yeast immobilization in LentiKats®: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol 22:65–72CrossRefGoogle Scholar
  26. Cunha MAA, Rodrigues RCB, Santos JC, Converti A, Silva SS (2007) Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel. Curr Microbiol 54:91–96PubMedCrossRefGoogle Scholar
  27. Dahiya JS (1991) Xylitol production by Petromyces albertensis grown on medium containing d-xylose. Can J Microbiol 37:14–18CrossRefGoogle Scholar
  28. De Andrade Rodrigues DCG, Da Silva SS, Vitolo M (2002) Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction. J Basic Microb 42(3):201–206CrossRefGoogle Scholar
  29. Delgado S, Díaz F, Vera L, Díaz R, Elmaleh S (2004) Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. J Membr Sci 228:55–63CrossRefGoogle Scholar
  30. Domínguez JM (1998) Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol Lett 20:53–56CrossRefGoogle Scholar
  31. Domínguez JM, Gong CS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for xylitol production by yeast. Appl Biochem Biotechnol 57–58:49–56PubMedCrossRefGoogle Scholar
  32. Domínguez JM, Gong CS, Tsao GT (1997) Production of xylitol from d-xylose by Debaryomyces hansenii. Appl Biochem Biotechnol 63–65:117–127PubMedCrossRefGoogle Scholar
  33. Domínguez JM, Cruz JM, Roca E, Domínguez H, Parajó JC (1999) Xylitol production from wood hydrolyzates by entrapped Debaryomyces hansenii and Candida guilliermondii cells. Appl Biochem Biotechnol 81:119–130PubMedCrossRefGoogle Scholar
  34. du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Tech 16:944–956CrossRefGoogle Scholar
  35. El-Batal AI, Khalaf SA (2004) Xylitol production from corn cobs hemicellulosic hydrolyzate by Candida tropicalis immobilized cells in hydrogel copolymer carrier. Int J Agric Biol 6:1066–1073Google Scholar
  36. Faria LFF, Gimenes MAP, Nobrega R, Pereira N Jr (2002a) Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 98–100:449–458Google Scholar
  37. Faria LFF, Pereira N Jr, Nobrega R (2002b) Xylitol production from d-xylose in a membrane bioreactor. Desalination 149:231–236Google Scholar
  38. Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997a) Environmental parameters affecting xylitol production from sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii. J Ind Microbiol Biotechnol 18:251–254CrossRefGoogle Scholar
  39. Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997b) Fermentation of sugar cane bagasse hemicellulosic hydrolyzate for xylitol production: effect of pH. Biomass Bioenerg 13:11–14CrossRefGoogle Scholar
  40. Furlan SA, Castro HF (2001) Xylitol production by Candida parapsilosis under fed-batch culture. Braz Arch Biol Technol 44:125–128CrossRefGoogle Scholar
  41. Furlan SA, Delia-Dupuy ML, Strehaiano P (1997) Short communication: xylitol production in repeated fed batch cultivation. World J Microbiol Biotechnol 13:591–592CrossRefGoogle Scholar
  42. Gírio FM, Roseiro JC, Sá-Machado P, Duarte-Reis AR, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Technol 16:1074–1078CrossRefGoogle Scholar
  43. Gírio FM, Amaro C, Azinheira H, Pelica F, Amaral-Collaço MT (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresour Technol 71:245–251CrossRefGoogle Scholar
  44. Gong CS, Chen LF, Tsao GT (1981) Quantitative production of xylitol from d-xylose by a high-xylitol producing yeast mutant Candida tropicalis HXP2. Biotechnol Lett 3:125–130CrossRefGoogle Scholar
  45. Granström T, Aristidou AA, Leisola M (2002) Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab Eng 4:248–256PubMedCrossRefGoogle Scholar
  46. Hallborn J, Gorwa MF, Meinander NB, Penttilii M, Keriinen S, Hahn-Higerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYLI gene. Appl Microbial Biotechnol 42:326–333Google Scholar
  47. Heikkilä H, Ojamo H, Tylli M, Ravanko V, Nurmi J, Haimi P, Alen R, Koivikko H (2003) Preparation of l-xylose and its use for the production of xylitol. US Patent 2003/0,097,029 A1Google Scholar
  48. Hinfray C, Jouenne T, Mignot L, Junter GA (1995) Influence of the oxygenation level on d-xylose fermentation by free and agar-entrapped cultures of Candida shehatae. Appl Microbiol Biotechnol 42:682–687CrossRefGoogle Scholar
  49. Hyvonen L, Koivistoinen P, Voirol F (1982) Food technological evaluation of xylitol. Adv Food Res 28:373–403CrossRefGoogle Scholar
  50. Ikeuchi T, Azuma M, Kato J, Ooshima H (1999) Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioenerg 16:333–339CrossRefGoogle Scholar
  51. Ikeuchi T, Kiritani R, Azuma M, Ooshima H (2000) Effect of d-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. J Basic Microbiol 40:167–175PubMedCrossRefGoogle Scholar
  52. Izumori K, Tuzaki K (1988) Production of xylitol from d-xylulose by Mycobacterium smegmatis. J Ferment Technol 66:33–36CrossRefGoogle Scholar
  53. Kim SB, Moon NK (2003) Enzymatic digestibility of used newspaper treated with aqueous ammonia-hydrogen peroxide solution. Appl Biochem Biotechnol 105–108:365–373PubMedCrossRefGoogle Scholar
  54. Kim TB, Oh DK (2003) Xylitol production by Candida tropicalis in a chemically defined medium. Biotechnol Lett 25(24):2085–2088Google Scholar
  55. Kim SY, Oh DK, Kim JH (1999) Evaluation of xylitol production from corn cob hemicellulose hydrolyzate by Candida parapsilosis. Biotechnol Lett 21:891–895CrossRefGoogle Scholar
  56. Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29:16–19PubMedCrossRefGoogle Scholar
  57. Kim TB, Lee YJ, Kim P, Kim CS, Oh DK (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnol Lett 26:623–627PubMedCrossRefGoogle Scholar
  58. Kosseva MR, Panesar PS, Kaur G, Kennedy JF (2009) Use of immobilised biocatalysts in the processing of cheese whey. Int J Biol Macromol 45:437–447PubMedCrossRefGoogle Scholar
  59. Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18PubMedCrossRefGoogle Scholar
  60. Lee H, Atkin AL, Barbosa MFS, Dorscheid DR, Schneider H (1988) Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii. Enzyme Microb Technol 10:81–84CrossRefGoogle Scholar
  61. Li M, Meng X, Diao E, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biot 87:387–392CrossRefGoogle Scholar
  62. Liaw WC, Chen CS, Chang WS, Chen KP (2008) Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng 105:97–105PubMedCrossRefGoogle Scholar
  63. Lu J, Tsai LB, Gong CS, Tsao GT (1995) Effect of nitrogen sources on xylitol production from d-xylose by Candida sp. l-102. Biotechnol Lett 17:167–170CrossRefGoogle Scholar
  64. Mahler GF, Guebel DV (1994) Influence of magnesium concentration on growth, ethanol and xylitol production by Pichia stipitis NRRL Y-7124. Biotechnol Lett 16:407–412CrossRefGoogle Scholar
  65. Mäkinen KK (2000) The rocky road of xylitol to its clinical application. J Dent Res 79:1352–1355PubMedCrossRefGoogle Scholar
  66. Martínez EA, Silva SS, Almeida e Silva JB, Solenzal AIN, Felipe MGA (2003) The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolyzate by C. guilliermondii. Proc Biochem 38:1677–1683Google Scholar
  67. Meyrial V, Delgenes JP, Moletta R, Navarro JM (1991) Xylitol production from d-xylose by Candida guilliermondii: fermentation behavior. Biotechnol Lett 13:281–286CrossRefGoogle Scholar
  68. Mikkola JP, Sjöholm R, Salmi T, Mäki-Arvela P (1999) Xylose hydrogenation: kinetic and NMR studies of the reaction mechanisms. Catal Today 48:73–81CrossRefGoogle Scholar
  69. Mikkola JP, Vainio H, Salmi T, Sjöholm R, Ollonqvist T, Väyrynen J (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A 196:143–155CrossRefGoogle Scholar
  70. Nakano K, Katsu R, Tada K, Matsumura M (2000) Production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control. J Biosci Bioeng 89(4):372–376PubMedCrossRefGoogle Scholar
  71. Nigam P, Singh D (1995) Processes for fermentative production of xylitol-a sugar substitute. Proc Biochem 30:117–124Google Scholar
  72. Nishio N, Sugawa K, Hayase N, Nagai S (1989) Conversion of d-xylose into xylitol by immobilized cells of Candida pelliculosa and Methanobacterium sp. HU. J Ferment Bioeng 67:356–360CrossRefGoogle Scholar
  73. Nobre A, Lucas T, Leão C (1999) Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65:3594–3598PubMedGoogle Scholar
  74. Nobre A, Duarte LC, Roseiro JC, Gírio FM (2002) A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats. Appl Microbiol Biotechnol 59:509–516PubMedCrossRefGoogle Scholar
  75. Nolleau V, Preziosi-Belloy L, Navarro JM (1995) The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis: incidence of oxygen and pH. Biotechnol Lett 17:417–422CrossRefGoogle Scholar
  76. Oh DK, Kim SY (1997) Xylitol production from xylose by Candida tropicalis DS-72. Korean J Appl Microbiol Biot 25(3):311–316Google Scholar
  77. Oh DK, Kim SY (1998) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50:419–425PubMedCrossRefGoogle Scholar
  78. Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58:438–444CrossRefGoogle Scholar
  79. Parajó JC, Domínguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24CrossRefGoogle Scholar
  80. Parajó JC, Domínguez H, Domínguez JM (1998a) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201CrossRefGoogle Scholar
  81. Parajó JC, Domínguez H, Domínguez JM (1998b) Biotechnological production of xylitol. Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65:203–212CrossRefGoogle Scholar
  82. Parajó JC, Domínguez H, Domínguez JM (1998c) Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolyzates. Bioresour Technol 65:203–212CrossRefGoogle Scholar
  83. Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 42:98–106Google Scholar
  84. Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G (1990) Fermentation of hardwood hemicellulose hydrolyzate by Pachysolen tannophilus, Candida shehatae and Pichia stipitis. J Ind Microbiol 6:157–164CrossRefGoogle Scholar
  85. Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM (1996) Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl Biochem Biotechnol 57–58:423–430PubMedCrossRefGoogle Scholar
  86. Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31PubMedCrossRefGoogle Scholar
  87. Preziosi-Belloy L, Nolleau V, Navarro JM (1997) Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis. Enzyme Microb Technol 21:124–129CrossRefGoogle Scholar
  88. Preziosi-Belloy L, Nolleau V, Navarro JM (2000) Xylitol production from aspenwood hemicellulose hydrolyzate by Candida guilliermondii. Biotechnol Lett 22:239–243CrossRefGoogle Scholar
  89. Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93PubMedCrossRefGoogle Scholar
  90. Rivas B, Torre P, Domínguez JM, Perego P, Converti A, Parajó JC (2003) Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnol Progr 19:706–713CrossRefGoogle Scholar
  91. Roberto IC, Felipe MGA, Lacis LS, Silva SS, de Mancilha IM (1991) Utilization of sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii for xylitol production. Bioresource Technol 36:271–275CrossRefGoogle Scholar
  92. Roberto IC, Mancilha IM, Sato S (1999) Influence of kLa on bioconversion of rice straw hemicellulose hydrolyzate to xylitol. Bioproc Eng 21:505–508Google Scholar
  93. Roca E, Meinander N, Hahn-Hägerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol Bioeng 51:317–326PubMedCrossRefGoogle Scholar
  94. Rodrigues DCGA, Silva SS, Felipe MGA (1998a) Using response-surface methodology to evaluate xylitol production by Candida guilliermondii by fed-batch process with exponential feeding rate. J Biotechnol 62:73–77CrossRefGoogle Scholar
  95. Rodrigues DCGA, Silva SS, Prata AMR, Felipe MDGA (1998b) Biotechnological production of xylitol from agroindustrial residues: evaluation of bioprocesses. Appl Biochem Biotechnol 70–72:869–875CrossRefGoogle Scholar
  96. Rodrigues DCGA, Da Silva SS, Felipe MGA (1999) Fed-batch culture of Candida guilliermondii FTI 20037 for xylitol production from sugar cane bagasse hydrolysate. Lett Appl Microbiol 29(6):359–363CrossRefGoogle Scholar
  97. Rodrigues DCGA, Da Silva SS, Almeida E, Silva JB, Vitolo M (2002) Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation: selection of process variables. Appl Biochem Biotechnol 98–100:875–883PubMedCrossRefGoogle Scholar
  98. Roseiro JC, Peito MA, Gírio FM, Amaral-Collaço MT (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490Google Scholar
  99. Saha BC (2003) Hemicellulose bioconversion. J Ind Microb Biotechnol 30:279–291CrossRefGoogle Scholar
  100. Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22:633–636PubMedCrossRefGoogle Scholar
  101. Sampaio F, Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from d-xylose. Braz J Microbiol 34:325–328CrossRefGoogle Scholar
  102. Sampaio FC, Torre P, Passos FML, Perego P, Passos FJV, Converti A (2004) Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol Progr 20:1641–1650CrossRefGoogle Scholar
  103. Sampaio FC, Mantovani HC, Passos FJV, Moraes CA, Converti A, Passos FML (2005) Bioconversion of d-xylose to xylitol by Debaryomyces hansenii UFV-170: product formation versus growth. Proc Biochem 40:3600–3606CrossRefGoogle Scholar
  104. Sampaio FC, Moraes CA, De Faveri D, Perego P, Converti A, Passos FML (2006) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Proc Biochem 41:675–681CrossRefGoogle Scholar
  105. Sampaio FC, Chaves-Alves VM, Converti A, Passos FML, Coelho JLC (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Biores Technol 99:202–208CrossRefGoogle Scholar
  106. Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (1998) The production of xylitol from d-xylose by fermentation with Hansenula polymorpha. Appl Microbiol Biotechnol 50:608–611CrossRefGoogle Scholar
  107. Santos JC, Carvalho W, Silva SS, Converti A (2003) Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flowrate. Biotechnol Progr 19:1210–1215CrossRefGoogle Scholar
  108. Santos JC, Mussatto SI, Silva SS, Carvalho W, Cunha MAA (2005a) Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. World J Microbiol Biotechnol 21:531–535CrossRefGoogle Scholar
  109. Santos JC, Converti A, De Carvalho W, Mussate SI, Da Silva SS (2005b) Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized cell fluidized bed reactor. Process Biochem 40:113–118CrossRefGoogle Scholar
  110. Santos JC, Mussatto SI, Cunha MAA, Silva SS (2005c) Variables that affect xylitol production from sugarcane bagasse hydrolyzate in a zeolite fluidized bed reactor. Biotechnol Progr 21(6):1639–1643CrossRefGoogle Scholar
  111. Sarrouh BF, Da Silva SS (2008) Evaluation of the performance of a three phase fluidized bed reactor with immobilized yeast cells for the biotechnological production of xylitol. Int J Chemical Reactor Eng 6:A75Google Scholar
  112. Sarrouh BF, Santos DT, Silva SS (2007) Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnol J 2:759–763CrossRefGoogle Scholar
  113. Sene L, Felipe MGA, Vitolo M, Silva SS, Mancilha IM (1998) Adaptation and reutilization of Candida guilliermondii cells for xylitol production in bagasse hydrolyzate. J Basic Microb 38:61–69CrossRefGoogle Scholar
  114. Sene L, Converti A, Zilli M, Felipe MGA, Silva SS (2001) Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolyzate. Appl Microbiol Biotechnol 57:738–743PubMedCrossRefGoogle Scholar
  115. Sheu DC, Duan KJ, Jou SR, Chen YC, Chen CW (2004) Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation. Biotechnol Lett 26:369–375CrossRefGoogle Scholar
  116. Silva SS, Afschar AS (1994) Microbial production of xylitol from d-xylose using Candida tropicalis. Bioproc Eng 11:129–134CrossRefGoogle Scholar
  117. Silva CJSM, Roberto IC (2001) Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Proc Biochem 36:1119–1124CrossRefGoogle Scholar
  118. Silva SS, Roberto IC, Felipe MGA, Mancilha IM (1996a) Batch fermentation of xylose for xylitol production in stirred-tank bioreactor. Proc Biochem 31:549–553CrossRefGoogle Scholar
  119. Silva SS, Vitolo M, Pessoa A Jr, Felipe MGA (1996b) Xylose reductase and xylitol dehydrogenase activities of d-xylose-xylitol-fermenting Candida guilliermondii. J Basic Microbiol 36:187–191Google Scholar
  120. Silva SS, Chanto AQ, Vitolo M, Felipe MGA, Mancilha IM (1999) A preliminary information about continuous fermentation using cell recycling for improving microbial xylitol production rates. Appl Biochem Biotechnol 77–79:571–575PubMedCrossRefGoogle Scholar
  121. Silva SS, Santos JC, Carvalho W, Aracava KK, Vitolo M (2003) Use of a fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Proc Biochem 38:903–907CrossRefGoogle Scholar
  122. Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferment Bioeng 80:565–570CrossRefGoogle Scholar
  123. Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–79CrossRefGoogle Scholar
  124. Suihko ML (1984) d-xylose Fermentation by Fusarium oxysporum and other fungi. PhD Thesis, University of HelsinkiGoogle Scholar
  125. Tamburini E, Bernardi T, Bianchini E, Pedrini P (2008) Xylitol production from d-xylose by a hyperacidophilic Candida tropicalis. J Biotechnol 136:292–293CrossRefGoogle Scholar
  126. Tavares JM, Duarte LC, Amaral-Collaço MT, Gírio FM (1999) Phosphate limitation stress induces xylitol overproduction by Debaryomyces hansenii. FEMS Microbiol Lett 171:115–120CrossRefGoogle Scholar
  127. Tavares JM, Duarte LC, Amaral-Collaço MT, Gírio FM (2000) The influence of hexoses addition on the fermentation of d-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme Microb Technol 26:743–747PubMedCrossRefGoogle Scholar
  128. Thonart P, Gómez Guerreiro J, Foucart M, Paquot M (1987) Bioconversion of xylose into xylitol by Pachysolen tannophilus. Mededelingen van de Faculteit Landbouwwetenschappen 52:1517–1528Google Scholar
  129. Tran LH, Yogo M, Ojima H, Idota O, Kawai K, Suzuki T, Takamizawa K (2004) The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol Bioproc Eng 9:223–228CrossRefGoogle Scholar
  130. van Zyl WH, Eliasson A, Hobley T, Hahn-Hägerdal B (1999) Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–833PubMedCrossRefGoogle Scholar
  131. Vandeska E, Amartey S, Kuzmanova S, Jeffries T (1995a) Effects of environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218CrossRefGoogle Scholar
  132. Vandeska E, Kuzmanova S, Jeffries TW (1995b) Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. J Ferment Bioeng 80:513–516CrossRefGoogle Scholar
  133. Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Proc Biochem 31:265–270CrossRefGoogle Scholar
  134. Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76:213–220PubMedCrossRefGoogle Scholar
  135. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRefGoogle Scholar
  136. Winkelhausen E, Pittman P, Kuzmanova S, Jefferies TW (1996) Xylitol formation by Candida boidinii in oxygen-limited chemostat culture. Biotechnol Lett 18:753–758CrossRefGoogle Scholar
  137. Winkelhausen E, Amartey SA, Kuzmanova S (2004) Xylitol production from d-xylose at different oxygen transfer coefficients in a batch bioreactor. Eng Life Sci 4:150–154CrossRefGoogle Scholar
  138. Winkelhausen E, Jovanovic-Malinovska R, Kuzmanova S, Cvetkovska M, Tsvetanov C (2008) Hydrogels based on u.v.-crosslinked poly(ethylene oxide)—matrices for immobilization of Candida boidinii cells for xylitol production. World J Microbiol Biotechnol 24:2035–2043CrossRefGoogle Scholar
  139. Yahashi Y, Hatsu M, Horitsu H, Kawai K, Suzuki T, Takamizawa K (1996) d-glucose feeding for improvement of xylitol productivity from d-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol Lett 18(12):1395–1400CrossRefGoogle Scholar
  140. Yoshitake J, Shimamura M, Imai T (1973) Production of polyalcohols by a Corynebacterium species. II. Xylitol production by a Corynebacterium species. Agric Biol Chem 37:2251–2259CrossRefGoogle Scholar
  141. Yoshitake J, Shimamura M, Ishizaki H, Irie Y (1976) Xylitol production by Enterobacter liquefaciens. Agric Biol Chem 40:1493–1503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José Manuel Salgado
    • 1
    • 2
    Email author
  • Attilio Converti
    • 3
  • José Manuel Domínguez
    • 1
    • 2
  1. 1.Laboratory of Agro-food Biotechnology, CITI-TecnólopoleParque Tecnológico de GaliciaOurenseSpain
  2. 2.Department of Chemical Engineering, Sciences FacultyUniversity of Vigo (Campus Ourense)OurenseSpain
  3. 3.Department of Chemical and Process EngineeringGenoa UniversityGenoaItaly

Personalised recommendations