D-Xylitol pp 133-160 | Cite as

Statistical Approaches for the Optimization of Parameters for Biotechnological Production of Xylitol

  • Rita de Cássia Lacerda Brambilla RodriguesEmail author
  • Eliana Vieira Canettieri
  • Ernesto Acosta Martinez
  • Larissa Canilha
  • Ana Irene Napolez Solenzal
  • João Batista de Almeida e Silva


Statistics is a fundamental tool in the analysis of any process data where there is variability. There are many ways to approach the problem of optimization and design of a process, which can be handled quickly using a number of statistical techniques. Statistical design of experiments is a mechanism of data collection appropriate to study the biotechnological process, like xylitol production. Several fermentation processes have been optimized using response surface methodology. However, one of the major problems to the researcher is identifying the independent variables that influence the study in order to explain the model which best represents the process. The upstream independent variables studied in the statistical design for fermentation processes are aeration rate, temperature, phosphate level, back pressure, carbon source, pH, power input, agitation rate, carbon/nitrogen ratio, nitrogen source and dissolved oxygen level. The statistical approach for biotechnological production of xylitol from lignocellulosic materials also could be helpful to optimize pretreatment of lignocellulosic biomass, conditioning of hemicellulosic hydrolysates and xylitol recovery from fermented hydrolysates. This chapter will provide an overview on the state of knowledge in these areas focus on statistical approaches.


Statistical approaches Optimization Lignocellulosic materials Xylitol bio-production 


  1. Almeida e Silva JB, Lima UA, Taqueda MES, Guaragna FG (1998) Use of fractional factorial design for selection of nutrients for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolysate. Braz J Chem Eng 15:273–279Google Scholar
  2. Almeida e Silva JB, Canilha L, Canettieri EV et al (2003) Use of response surface methodology to evaluate the optimum environmental conditions for the bioconversion of xylose into xylitol in eucalyptus hemicellulosic hydrolysate. J Chem Technol Biotechnol 78:945–948Google Scholar
  3. Alriksson B, Sarvari Horvath I et al (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 121:911–922PubMedCrossRefGoogle Scholar
  4. Alriksson B, Sjode A et al (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 129–132:599–611PubMedCrossRefGoogle Scholar
  5. Alves LA, Felipe MGA, Almeida e Silva JB et al (1998) Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 70–72:89–98Google Scholar
  6. Baek SC, Kwon YJ (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol Bioprocess Eng 12:404–409CrossRefGoogle Scholar
  7. Banerjee N, Bhatnagar R et al (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11:226–228CrossRefGoogle Scholar
  8. Bas I, Boyaci IS (2007) Modeling and optimization of low calorie mixed fruit jelly by response surface methodology. Food Qual Prefer 19:79–85Google Scholar
  9. Berson RE, Young JS et al (2006) Reintroduced solids increase inhibitor levels in a pretreated corn stover hydrolysate. Appl Biochem Biotechnol 129–132:612–620PubMedCrossRefGoogle Scholar
  10. Bolen PL, Roth KA, Freer SN (1986) Affinity purifications aldose reductase and xylitol dehydrogenase from the xylose fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52:660–664PubMedGoogle Scholar
  11. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, New YorkGoogle Scholar
  12. Canettieri EV, Almeida e Silva JB, Felipe MGA (2001) Application on factorial design for xylitol production from eucalyptus hemicellulosic hydrolysate. Appl Biochem Biotechnol 94:159–168Google Scholar
  13. Canettieri EV, Rocha GJM, Carvalho JA Jr, Almeida e Silva JB (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour Technol 98:422–428Google Scholar
  14. Canilha L, Almeida e Silva JB, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem 39:1909–1912Google Scholar
  15. Canilha L, Carvalho W, Almeida e Silva JB (2005) Influence of medium composition on xylitol bioproduction from wheat straw hemicelulosic hydrolysate. WJ Microbiol Biotechnol 21:1087–1093Google Scholar
  16. Canilha L, Carvalho W, Almeida e Silva JB (2006) Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolysate fermentation. J Sci Food Agric Microbiol 86:1371–1376Google Scholar
  17. Canilha L, Carvalho W, Felipe MGA, Almeida e Silva JB (2008a) Xylitol production from wheat straw hemicellulosic hydrolysate detoxification and carbon source used for inoculums preparation. Braz J Microbiol 39:333–336Google Scholar
  18. Canilha L, Carvalho W, Giulietti M et al (2008b) Clarification of a wheat straw-derived medium with ion-exchange resins for xylitol crystallization. J Chem Technol Biotechnol 83:715–721CrossRefGoogle Scholar
  19. Cantarella M, Cantarella L et al (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206PubMedCrossRefGoogle Scholar
  20. Carvalho W, Batista MA, Canilha L et al (2004a) Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:1308–1312CrossRefGoogle Scholar
  21. Carvalho W, Santos JC, Canilha L et al (2004b) A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor. Process Biochem 39:2135–2141CrossRefGoogle Scholar
  22. Cherubini F, Strømman AH (2011) Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod Biorefin. doi: 10.1002/bbb.297 Google Scholar
  23. Cortez EV, Felipe MGA, Roberto IC et al (2001) Extraction by reversed micelles of the intracellular enzyme xylose reductase. Appl Biochem Biotechnol 91(93):753–759PubMedCrossRefGoogle Scholar
  24. De Faveri D, Torre P, Perego P, Converti A (2004a) Statistical investigation on the effects of starting xylose concentration and oxygen mass flowrate on xylitol production from rice straw hydrolyzate by response surface methodology. J Food Eng 65(3):383–389CrossRefGoogle Scholar
  25. De Faveri D, Torre P, Perego P, Converti A (2004b) Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology. J Food Eng 61:407–412CrossRefGoogle Scholar
  26. Elander R, Ibsen K et al (2012) Potential of various pretreatment technologies to meet 2010 pretreatment conversion goals.
  27. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter Inc, New YorkGoogle Scholar
  28. Fogel R, Garcia RR, Oliveira RS et al (2005) Optimization of acid hydrolysis of sugarcane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii. Appl Biochem Biotechnol 121–124:741–752PubMedCrossRefGoogle Scholar
  29. Geiger OE (1997) Statistical methods for fermentation optimization. In: Vogel HC, Todaro CL (ed) Fermentation and biochemical engineering handbook, 2nd edn. Noyes Publications, WestwoodGoogle Scholar
  30. Greene N, Celik FE, Dale B et al (2004) Growing energy: how biofuels can help end America’s oil dependence. Nature Resources Defense Council, New YorkGoogle Scholar
  31. Hao H, Hou B, Wang G, Lin JK (2006) Effect of solvent on crystallization behavior of xylitol. J Cryst Growth 290:192–196CrossRefGoogle Scholar
  32. Heipieper JJ, Weber FJ et al (1994) Mechanism of resistance of whole cells to toxic organic solvents. Tibtech 12:409–415CrossRefGoogle Scholar
  33. Ho NWY, Lin FP, Huang S et al (1990) Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb Technol 12:33–39PubMedCrossRefGoogle Scholar
  34. Huang C, Jiang Y, Guo G, Hwang W (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329PubMedCrossRefGoogle Scholar
  35. Hyvönen L, Koivistoinen P (1982) Food technological evaluation of xylitol. Adv Food Res 28:373–403CrossRefGoogle Scholar
  36. Jacobus PH (2001) Biotechnology and the utilization of biowaste as resource for byproduct development. Trend Biotechnol 9(5):172–177Google Scholar
  37. Jonsson LJ, Palmqvist E et al (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRefGoogle Scholar
  38. Kern M, Haltrich D, Nidetzky B, Kulbe DK (1997) Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435. FEMS Microbiol Lett 149:31–37PubMedCrossRefGoogle Scholar
  39. Kern M, Nidetzky B, Kulbe KD, Halt D (1998) Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose-fermenting yeast Candida tenuis. J Ferment Bioeng 85(2):196–202CrossRefGoogle Scholar
  40. Klinke HB, Thomsen AB et al (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  41. Lopez M, Nichols N et al (2004) Isolation of microorganisms for biological detoxification. Appl Microbiol Biotechnol 64:125–131PubMedCrossRefGoogle Scholar
  42. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323PubMedCrossRefGoogle Scholar
  43. Mäki-Arvela P, Salmi T, Holmbom B et al (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666PubMedCrossRefGoogle Scholar
  44. Mancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841CrossRefGoogle Scholar
  45. Martinez EA, Silva SS, Almeida e Silva JB et al (2003) The effect of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii. Process Biochem 38:1677–1683Google Scholar
  46. Martínez EA, Almeida e Silva JB, Giulietti M, Solenzal AIN (2007) Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb Technol 40:1185–1189Google Scholar
  47. Martínez EA, Giulietti M, Almeida e Silva JB, Derenzo S (2008) Kinetics of the xylitol crystallization in hydro-alcoholic solution. Chem Eng Process 47:2157–2162Google Scholar
  48. Martínez EA, Giulietti M, Almeida e Silva JB et al (2009) Batch cooling crystallization of xylitol produced by biotechnological route. J Chem Technol Biotechnol. doi: 10.1002/jcbt.2050
  49. Mayerhoff ZDVL, Roberto IC, Silva SS (1998) Production of xylitol by Candida mogii from rice straw hydrolysate study of environmental effects using statistical design. Appl Biochem Biotechnol 70–72:149–159CrossRefGoogle Scholar
  50. Mayerhoff ZDVL, Roberto IC, Franco TT (2001) Activity of xylose reductase from Candida mogii grown in media containing different concentrations of rice straw hydrolysate. Appl Biochem Biotechnol 91–93:729–736PubMedCrossRefGoogle Scholar
  51. Mayerhoff ZDVL, Roberto IC, Franco TT (2006) Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida mogii. Appl Microbiol Biotechnol. doi: 10.1007/s00253-005-0304-3 PubMedGoogle Scholar
  52. Mosier N, Wyman C et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686CrossRefGoogle Scholar
  53. Moutta RO, Chandel AK, Rodrigues RCLB et al (2012) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech. doi: 10.1007/s12355-011-0116-y Google Scholar
  54. Mussatto SI, Roberto IC (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem 43(5):540–546CrossRefGoogle Scholar
  55. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley, New YorkGoogle Scholar
  56. Nichols NN, Dien BS et al (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121–124:379–390PubMedCrossRefGoogle Scholar
  57. Nilvebrant NO, Persson P et al (2003) Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 105–108:615–628PubMedCrossRefGoogle Scholar
  58. Nývlt J, Homstomský J, Giulietti M (2001) Cristalização. Ed. Da UFSCar, São CarlosGoogle Scholar
  59. Okuda N, Soneura M et al (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106:128–133PubMedCrossRefGoogle Scholar
  60. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331CrossRefGoogle Scholar
  61. Pamqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  62. Parajó JC, Domínguez H, Domínguez JM (1998) Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour Technol 66:25–40CrossRefGoogle Scholar
  63. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose. doi: 10.1007/s10570-009-9309-x Google Scholar
  64. Prakasham RS, Sreenivas RR, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotech Pharm 3:8–36Google Scholar
  65. Purwadi R, Niklasson C et al (2004) Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J Biotechnol 114:187–198PubMedCrossRefGoogle Scholar
  66. Rajesham S, Cheong TJ (1989) A study on the surface characteristics of burnished components. Mech Working Technol 20:129–138CrossRefGoogle Scholar
  67. Rajesham S, Jayakumaran K, Ullah K et al (1997) Process capability analysis for producing high precision cylindrical bores using ballasting and super abrasive reaming as a joint technique—Taguchi approach. International Conference on Quality Engineering and Management, 4–6th August, Coimbatore, India, pp 501–506Google Scholar
  68. Rao RS, Prakasham RS, Prasa KK et al (2004) Xylitol production by Candida sp: parameter optimization using Taguchi approach. Process Biochem 39:951–956CrossRefGoogle Scholar
  69. Rodrigues DCGA, Silva SS, Felipe MGA (1998) Using response-surface methodology to evaluate xylitol production by Candida guilliermondii by fed-batch process with exponential feeding rate. J Biotechnol 62:73–77CrossRefGoogle Scholar
  70. Rodrigues RCLB, Felipe MGA, Almeida e Silva JB et al (2001) The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation. Brazil J Chem Eng 18:299–311Google Scholar
  71. Rodrigues RCLB, Felipe MGA, Almeida e Silva JB, Vitolo M (2003) Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using, controlled vacuum evaporation process variables Process. Biochem 38(8):1231–1237Google Scholar
  72. Rodrigues RCLB, Kenealy WR, Dietricg D, Jeffries TW (2012) Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis. Bioresour Technol (in press)Google Scholar
  73. Roy RK (1990) A primer on the Taguchi method. Society of Manufacturing Engineers, New YorkGoogle Scholar
  74. Russo JR (1977) Xylitol: anti-carie sweetener? Food Eng 79:37–40Google Scholar
  75. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  76. Sampaio FC, De Faveri D, Mantovani HC et al (2006a) Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170. J Food Eng 76(3):376–386CrossRefGoogle Scholar
  77. Sampaio FC, Passos FML, Passos FJV et al (2006b) Xylitol crystallization from culture media fermented by yeasts. Chem Eng Process 45:1041–1046CrossRefGoogle Scholar
  78. Santos JC, Pinto IRG, Carvalho W et al (2005) Sugarcane bagasse as raw material and immobilization support for xylitol production. Appl Biochem Biotechnol 121–124:673–683PubMedCrossRefGoogle Scholar
  79. Schneider H (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using mutant yeast. Enz Microb Technol 19:94–98CrossRefGoogle Scholar
  80. Silva CJSM, Roberto IC (2001) Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process Biochem 36(11):1119–1124CrossRefGoogle Scholar
  81. Sreenath H, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 72:253–260CrossRefGoogle Scholar
  82. Taherzadeh MJ, Eklund R, Gustafsson L (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665CrossRefGoogle Scholar
  83. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact. doi: 10.1186/1475-2859-6-9 PubMedGoogle Scholar
  84. Um B, Bae S (2011) Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse korean. J Chem Eng. doi: 10.1007/s11814-011-0058-9 Google Scholar
  85. Villarreal MLM, Prata AMR, Felipe MGA, Almeida e Silva JB (2006) Detoxification procedures of eucalyptus hemicelluloses hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microbial Technol 40:17–24Google Scholar
  86. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume 1- results of screening for potential candidates from sugars and synthesis gas. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL).
  87. Zaldivar J, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33PubMedCrossRefGoogle Scholar
  88. Zaldivar J, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530PubMedCrossRefGoogle Scholar
  89. Zaldivar J, Ingram LO et al (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rita de Cássia Lacerda Brambilla Rodrigues
    • 1
    Email author
  • Eliana Vieira Canettieri
    • 2
  • Ernesto Acosta Martinez
    • 3
  • Larissa Canilha
    • 1
  • Ana Irene Napolez Solenzal
    • 4
  • João Batista de Almeida e Silva
    • 1
  1. 1.Biotechnology Department, EEL—Engineering School of LorenaSão Paulo UniversityLorenaBrazil
  2. 2.Energy DepartmentSão Paulo State University-UNESPGuaratinguetáBrazil
  3. 3.Department of Technology, Engineering College of FoodUEFS- State University of Feira de SantanaFeira de SantanaBrazil
  4. 4.Department of Chemical EngineeringICIDCA-Cuban Institute for Research on Sugarcane DerivativesHavanaCuba

Personalised recommendations