D-Xylitol pp 109-131 | Cite as

Microorganisms for Xylitol Production: Focus on Strain Improvement

  • Miho Sasaki
  • Masayuki Inui
  • Hideaki YukawaEmail author


Xylitol, a five-carbon sugar alcohol, is widely used as a functional sweetener in the food and confectionary industry because of a number of advantageous properties. Although xylitol is industrially produced by chemical reduction of d-xylose derived from hemicellulose hydrolysates, this production method is uneconomical because of the requirement for pure d-xylose, high temperature, and pressure. Therefore, xylitol production by microorganisms has attracted focus as an economical and environment-friendly method. A variety of compounds have been used as substrates (d-xylose, d-glucose, d-arabitol, and l-arabinose) or co-substrates (d-glucose, ethanol, and glycerol) during microbial production of xylitol. In order to improve the biological production of xylitol, both natural xylitol-producing and nonproducing strains of microorganisms have been subjected to genetic modification strategies. This chapter describes recent advances made in metabolic engineering efforts aimed at improving production of xylitol by fungi, yeasts, and bacteria.


Xylitol Recombinant Microorganisms Cofactor Regeneration Co-substrate 


  1. Ahmad I, Shim WY, Jeon WY, Yoon BH, Kim JH (2012) Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35:199–204PubMedCrossRefGoogle Scholar
  2. Akinterinwa O, Cirino PC (2009) Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11:48–55PubMedCrossRefGoogle Scholar
  3. Akinterinwa O, Cirino PC (2011) Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways. Appl Environ Microbiol 77:706–709PubMedCrossRefGoogle Scholar
  4. Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467PubMedCrossRefGoogle Scholar
  5. Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, Ryu YW, Seo JH (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Tech 35:545–549CrossRefGoogle Scholar
  6. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292CrossRefGoogle Scholar
  7. Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844PubMedCrossRefGoogle Scholar
  8. Cheng H, Li Z, Jiang N, Deng Z (2009) Cloning, purification and characterization of an NAD-dependent d-arabitol dehydrogenase from acetic acid bacterium, Acetobacter suboxydans. Protein J 28:263–272PubMedCrossRefGoogle Scholar
  9. Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27:333–341PubMedCrossRefGoogle Scholar
  10. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220PubMedCrossRefGoogle Scholar
  11. Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64:1350–1358PubMedGoogle Scholar
  12. Chung YS, Kima MD, Leea WJ, Ryub YW, Kimc JH, Seoa jH (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 30:809–816Google Scholar
  13. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176PubMedCrossRefGoogle Scholar
  14. De Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trend Biotechnol 22:72–79CrossRefGoogle Scholar
  15. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258-266 Google Scholar
  16. Dominguez H, Lindley ND (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62:3878–3880PubMedGoogle Scholar
  17. Fernandes C, Avelino A, Farelo FF (1999) Crystallization of xylitol from hydro-alcoholic solutions containing arabitol and adonitol. Proceedings of the 14th international symposium on industrial crystallization, Cambridge, UK, 12–16 Sept 1999Google Scholar
  18. Granström TB, Izumori K, Leisola M (2007a) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281PubMedCrossRefGoogle Scholar
  19. Granström TB, Izumori K, Leisola M (2007b) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276PubMedCrossRefGoogle Scholar
  20. Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84Google Scholar
  21. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953PubMedCrossRefGoogle Scholar
  22. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hag-erdahl B, Penttila M, Keranen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1096PubMedCrossRefGoogle Scholar
  23. Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49:399–404PubMedCrossRefGoogle Scholar
  24. Hibi M, Yukitomo H, Ito M, Mori H (2007) Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding. Appl Environ Microbiol 73:7657–7663PubMedCrossRefGoogle Scholar
  25. Ikeuchi T, Kiritani R, Azuma M, Ooshima H (2000) Effect of d-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. J Basic Microbiol 40:167–175PubMedCrossRefGoogle Scholar
  26. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196PubMedCrossRefGoogle Scholar
  27. Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504PubMedCrossRefGoogle Scholar
  28. Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53:106–113PubMedCrossRefGoogle Scholar
  29. Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198PubMedCrossRefGoogle Scholar
  30. Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis d-xylulokinase mutant. Appl Microbiol Biotechnol 68:42–45PubMedCrossRefGoogle Scholar
  31. Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35:331–341PubMedCrossRefGoogle Scholar
  32. Khankal R, Chin JW, Cirino PC (2008a) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134:246–252PubMedCrossRefGoogle Scholar
  33. Khankal R, Luziatelli F, Chin JW, Frei CS, Cirino PC (2008b) Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production. Biotechnol Lett 30:1645–1653PubMedCrossRefGoogle Scholar
  34. Kim MS, Chung YS, Seo JH, Jo DH, Park YH, Ryu YW (2001) High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis. J Microbiol Biotechnol 11:564–569Google Scholar
  35. Kim SH, Yun JY, Kim SG, Seo JH, Park JB (2010) Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enz Microb Technol 46:366–371CrossRefGoogle Scholar
  36. Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganism. Benjamin/Cummings, London, pp 115–142Google Scholar
  37. Ko BS, Kim J, Kim JH (2006a) Production of xylitol from d-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72:4207–4213PubMedCrossRefGoogle Scholar
  38. Ko BS, Rhee CH, Kim JH (2006b) Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnol Lett 28:1159–1162PubMedCrossRefGoogle Scholar
  39. Ko BS, Kim DM, Yoon BH, Bai S, Lee HY, Kim JH, Kim IC (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213PubMedCrossRefGoogle Scholar
  40. Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH (2006a) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43:86–89CrossRefGoogle Scholar
  41. Kwon SG, Park SW, Oh DK (2006b) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18PubMedCrossRefGoogle Scholar
  42. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188PubMedCrossRefGoogle Scholar
  43. London J, Hausman S (1982) Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei. J Bacteriol 150:657–661PubMedGoogle Scholar
  44. Nair N, Zhao H (2010) Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugar. Metab Eng 12:462–468PubMedCrossRefGoogle Scholar
  45. Nigam P, Singh D (1995) Processes for fermentative production of xylitol—a sugar substitute. Process Biochem 30:117–124Google Scholar
  46. Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M (2005) Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol 118:55–66PubMedCrossRefGoogle Scholar
  47. Oh YJ, Lee TH, Lee SH, Oh EJ, Ryu YW, Kim MD, Seo JH (2007) Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 47:37–42CrossRefGoogle Scholar
  48. Oh EJ, Bae YH, Kim KH, Park YC, Seo JH (2012) Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatalysis Agric Biotechnol 1:15–19CrossRefGoogle Scholar
  49. Onishi H, Suzuki T (1969) Microbial production of xylitol from glucose. Appl Environ Microbiol 18:1031–1035Google Scholar
  50. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83PubMedCrossRefGoogle Scholar
  51. Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31PubMedCrossRefGoogle Scholar
  52. Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93PubMedCrossRefGoogle Scholar
  53. Rao RS, Ch P, Jyothi RS, Prakasham Ch SR, Sarma PN, Venkateswar RL (2006) Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. J Microbiol 44:113–120Google Scholar
  54. Reiner AM (1977) Xylitol and d-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J Bacteriol 132:166–173PubMedGoogle Scholar
  55. Rodrigues RC, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38:1649–1655PubMedCrossRefGoogle Scholar
  56. Saha BC, Sakakibara Y, Cotta MA (2007) Production of d-arabitol by a newly isolated Zygosaccharomyces rouxii. J Ind Microbiol Biotechnol 34:519–523PubMedCrossRefGoogle Scholar
  57. Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353PubMedCrossRefGoogle Scholar
  58. Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng 107:506–511PubMedCrossRefGoogle Scholar
  59. Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115PubMedCrossRefGoogle Scholar
  60. Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066PubMedCrossRefGoogle Scholar
  61. Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K (2003) Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from d-arabitol. Biosci Biotechnol Biochem 67:584–591PubMedCrossRefGoogle Scholar
  62. Suzuki T, Yokoyama S, Kinoshita Y, Hatsu M, Tamizawa K, Kawai K (1999) Expression of xyrA gene coding for d-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J Ferment Bioeng 87:280–284Google Scholar
  63. Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K (2002) Novel enzymatic method for production of xylitol from d-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem 66:2614–2620PubMedCrossRefGoogle Scholar
  64. Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. Bioprocess Technol 16:37–52PubMedGoogle Scholar
  65. Toivari MH, Ruohonen L, Miasnikov AN, Richard P, Penttilä M (2007) Metabolic engineering of Saccharomyces cerevisiae for conversion of d-glucose to xylitol and other five-carbon sugars and sugar alcohols. Appl Environ Microbiol 73:5471–5476PubMedCrossRefGoogle Scholar
  66. Trahan L (1995) Xylitol: a review of its action on mutans streptococci and dental plaque—its clinical significance. Int Dent J 45:77–92PubMedGoogle Scholar
  67. Wang TH, Zhong YH, Huang W, Liu T, You YW (2005) Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol 40:424–429PubMedCrossRefGoogle Scholar
  68. Werpy T, Petersen G (2004) Top value added chemicals from biomass, volume I: results of screening for potential candidates from sugars and synthesis gas. U. S. Department of EnergyGoogle Scholar
  69. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRefGoogle Scholar
  70. Yoon BH, Jeon WY, Shim WY, Kim JH (2011) l-arabinose pathway engineering for arabitol-free xylitol production in Candida tropicalis. Biotechnol Lett 33:747–753PubMedCrossRefGoogle Scholar
  71. Yoshitake T, Shimamura M, Imai T (1973) Xylitol production by a Corynebacterium species. Agr Biol Chem 37:2251–2259CrossRefGoogle Scholar
  72. Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583PubMedCrossRefGoogle Scholar
  73. Zhang F, Qiao D, Xu H, Liao C, Li S, Cao Y (2009) Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47:351–357PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Molecular Microbiology and Biotechnology GroupResearch Institute of Innovative Technology for the EarthKizugawaJapan

Personalised recommendations