Advertisement

D-Xylitol pp 85-107 | Cite as

Molecular Mechanism of d-Xylitol Production in Yeasts: Focus on Molecular Transportation, Catabolic Sensing and Stress Response

  • Jyosthna Khanna Goli
  • Smita Hasini Panda
  • Venkateswar Rao LingaEmail author
Chapter

Abstract

Xylitol is a naturally occurring non fermentable sugar alcohol. It can be produced by the microbial fermentation of xylose extracted from hemicellulose of lignocellulosic substrates like corn fiber, corn husk, sugarcane bagasse and birch wood. In last few decades, xylitol gained significant importance due to its applications in food and pharmaceutical industries. Sustainable production of xylitol from renewable sources is possible by fermentation process using xylose assimilating microbes. As chemical production of xylitol involves high temperature, pressure and expensive purification steps, highly efficient biotechnological production of xylitol using microorganisms is gaining more interest over chemical processes. For the economic production of xylitol, microorganisms with high osmotolerance, inhibitor resistance, fast conversion rates, and stress tolerance are required in the fermentation process. As xylose uptake might be a limiting factor for xylose fermentation, the study of xylose uptake with respect to xylose transporting proteins and improvement of utilization of sugar mixtures is necessary. This review is to provide an overall view of xylitol production by yeast strains under sugar, saline and different nutritive stress conditions. In addition this review emphasizes the role of molecular changes (genes) and pathways involved in the utilization and transport of sugars for increased xylitol production.

Keywords

Xylitol Stress response Yeasts Catabolic sensing Molecular transport 

References

  1. Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124:123–130CrossRefGoogle Scholar
  2. Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GDP1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144PubMedGoogle Scholar
  3. Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187PubMedCrossRefGoogle Scholar
  4. Arrizon J, Mateos JC, Sandoval G, Aguilar B, Solis J, Aguilar MG (2011) Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng. doi: 10.1111/j.1745-4530.2010.00599.x Google Scholar
  5. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes Larabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150PubMedCrossRefGoogle Scholar
  6. Beker ME, Rapoport AI (1987) Conservation of yeasts by dehydration. Adv Biochem Eng/Biotechnol 35:127–171CrossRefGoogle Scholar
  7. Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 10:585–592PubMedGoogle Scholar
  8. Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092PubMedGoogle Scholar
  9. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  10. Blomberg A, Adler L (1993) Tolerance of fungi to NaC1. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 209–232Google Scholar
  11. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111PubMedCrossRefGoogle Scholar
  12. Boorstein WR, Craig EA (1990a) Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J 9:2543–2553PubMedGoogle Scholar
  13. Boorstein WR, Craig EA (1990b) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10:3262–3267PubMedGoogle Scholar
  14. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Sci 259:1760–1763CrossRefGoogle Scholar
  15. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbial Biotechnol 19:256–260CrossRefGoogle Scholar
  16. Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O’Shea EK (2008) Structure and function of a transcriptional network activated by the MAPK Hog1. Nat Genetics 40:1300–1306CrossRefGoogle Scholar
  17. Carlson M, Osmond BC, Botstein D (1981) Mutants of yeast defective in sucrose utilization. Genetics 98:25–40PubMedGoogle Scholar
  18. Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Dordrecht, pp 63–81Google Scholar
  19. Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:008–020Google Scholar
  20. Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844PubMedCrossRefGoogle Scholar
  21. Cheng KK, Ling HZ, Zhang JA, Ping WX, Huang W, Ge JP, Xu JM (2010) Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnol Biotechnol Equip 24:1606–1611CrossRefGoogle Scholar
  22. Crowe JH, Hoekstra FA, Crowe LM (1989) Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc Natl Acad Sci U S A 86:520–523PubMedCrossRefGoogle Scholar
  23. Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (hog) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968PubMedCrossRefGoogle Scholar
  24. Erasmus DJ, van der Merwe GK, van Vuuren HJJ (2003) Genome-wide analyses, metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res 3:375–399PubMedCrossRefGoogle Scholar
  25. Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614PubMedCrossRefGoogle Scholar
  26. Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704PubMedCrossRefGoogle Scholar
  27. Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn. Academic Press, New York, pp 205–259Google Scholar
  28. Gardonyi M, Osterberg M, Rodrigues C, Spencer-Martins I, Hahn- Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52PubMedCrossRefGoogle Scholar
  29. Ghindea R, Csutak O, Stoica I, Tanase I, Tassu V (2010) Production of xylitol by yeasts. Romanian Biotechnol Lett 15(3):5217–5222Google Scholar
  30. Gonzalez-Hernandez JC, Cardenas-Monroy CA, Peo A (2004) Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21:403–412PubMedCrossRefGoogle Scholar
  31. Gounalaki N, Thireos G (1994) Yap1, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 13:4036–4041PubMedGoogle Scholar
  32. Granström TB, Izumori K, Leisola M (2007a) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74:277–281PubMedCrossRefGoogle Scholar
  33. Granström TB, Izumori K, Leisola M (2007b) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276PubMedCrossRefGoogle Scholar
  34. Guidi F, Magherini M, Gamberi T, Borro M, Simmaco M, Modesti A (2010) Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Biochim Biophys Acta 1804:1516–1525PubMedCrossRefGoogle Scholar
  35. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104PubMedCrossRefGoogle Scholar
  36. Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol 148:2783–2788Google Scholar
  37. Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80(4):675–684PubMedCrossRefGoogle Scholar
  38. Hirayama T, Maeda T, Saito H, Shinozaki K (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol Gen Genetics 249:127–138CrossRefGoogle Scholar
  39. Hoekstra FA, Crowe JH, Crowe LM (1992) Germination and ion leakage are linked with phase transitions of membrane lipids during imbibition of Typha latifolia pollen. Physiol Plant 84:29–34CrossRefGoogle Scholar
  40. Hofer M, Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J 172:15–22PubMedGoogle Scholar
  41. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedCrossRefGoogle Scholar
  42. Hohmann S, Mager WH (2003) In: Mager WH (ed) Introduction in yeast stress responses. Springer, Berlin, pp 1–9CrossRefGoogle Scholar
  43. Hohmann S, Nielsen S, Agre P (2001) Aquaporins. Academic Press, San DiegoGoogle Scholar
  44. Holst B, Lunde C, Lages F, Oliveira R, Lucas C, Kielland-Brandt MC (2000) GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37:108–124PubMedCrossRefGoogle Scholar
  45. Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiol 144:671–680CrossRefGoogle Scholar
  46. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotechnol 27:l–32Google Scholar
  47. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326PubMedCrossRefGoogle Scholar
  48. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509PubMedCrossRefGoogle Scholar
  49. Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53(1):106–113PubMedCrossRefGoogle Scholar
  50. Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, del Olmo M (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145(1):211–220PubMedCrossRefGoogle Scholar
  51. Jones RP, Gadd GM (1990) Ionic nutrition of yeast physiological mechanisms involved and implications for biotechnology. Enz Microb Technol 12:402–418CrossRefGoogle Scholar
  52. Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. Ind J Microbiol Biotechnol 35:331–341CrossRefGoogle Scholar
  53. Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cellular Biol 22:8056–8066CrossRefGoogle Scholar
  54. Kaniak A, Xue Z, Macool D, Kim JH, Johnston M (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 3:221–231PubMedCrossRefGoogle Scholar
  55. Kayingo G, Kilian SG, Prior BA (2001) Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Arch Microbiol 177:29–35PubMedCrossRefGoogle Scholar
  56. Khroustalyova G, Adler L, Rapoport A (2001) Exponential growth phase cells of the osmotolerant yeast Debaryomyces hansenii are extremely resistant to dehydration stress. Process Biochem 36:1163–1166CrossRefGoogle Scholar
  57. Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis. Appl Microbial Biotechnol 27:545–548Google Scholar
  58. Kinterinwa AO, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467CrossRefGoogle Scholar
  59. Ko CH, Chiang PN, Chiu PC, Liu CC, Yang CL, Shiau IL (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chemical Technol Biotechnol 83:534–540CrossRefGoogle Scholar
  60. Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783CrossRefGoogle Scholar
  61. Krallish I, Jeppsson H, Rapoport A, Hanh-Hagerdal B (1997) Effect of xylitol and trehalose on dry resistance of yeasts. Appl Microbiol Biotechnol 47:447–451PubMedCrossRefGoogle Scholar
  62. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934PubMedCrossRefGoogle Scholar
  63. Lachke AH, Jeffries TW (1986) Levels of the enzymes of the pentose phosphate pathway in Pachysolen tannophilus Y-2460 and selected mutants. Enz Microbial Technol 8:353–359CrossRefGoogle Scholar
  64. Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145:2577–2585PubMedGoogle Scholar
  65. Larsson C, Morales C, Gustafsson L, Adler L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172:1769–1774PubMedGoogle Scholar
  66. Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549PubMedCrossRefGoogle Scholar
  67. Leandro MJ, Spencer-Martins I, Gonçalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646–1655PubMedCrossRefGoogle Scholar
  68. Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525PubMedCrossRefGoogle Scholar
  69. Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191PubMedCrossRefGoogle Scholar
  70. Leslie SB, Teter SA, Crowe LM, Crowe JH (1994) Trehalose lowers membrane phase transition in dry yeast cells. Biochem Biophys Acta 1192:7–13PubMedCrossRefGoogle Scholar
  71. Lin SL, Miller JD, Ying SY (2010) Intronic microRNA (miRNA). J Biomed Biotechnol 4:26818Google Scholar
  72. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371PubMedGoogle Scholar
  73. Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245PubMedCrossRefGoogle Scholar
  74. Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by APKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558PubMedCrossRefGoogle Scholar
  75. Mager WH, Ferreira M (1993) Stress response of yeast. Biochem J 290:1–13PubMedGoogle Scholar
  76. Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003PubMedGoogle Scholar
  77. Martınez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:227–2235Google Scholar
  78. McCartney RR, Schmidt MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biological Chem 276:36460–36466CrossRefGoogle Scholar
  79. Milessi TSD, Chandel AK, Branco RF, Sílva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guilliermondii using sugarcane bagasse hemicellulosic hydrolysate. Food Nutr Sci 2:235–240CrossRefGoogle Scholar
  80. Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-Glycerol-3-phosphatase from Saccharomyces cerevisiae. J Biol Chem 271:13875–13881PubMedCrossRefGoogle Scholar
  81. Oliveir R, Lages F, Silva-Graca M, Lucas C (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochem Biophys Acta 1613:57–71CrossRefGoogle Scholar
  82. Panek AD (1995) Trehalose metabolism—new horizons in technological applications. Brasil J Med Biological Res 28:169–181Google Scholar
  83. Pao SS, Paulsen IT, Saier MH (1998) Major facilitator super family. Microbiol Molecular Biol Rev 62(1):1–34Google Scholar
  84. Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5:368–372PubMedCrossRefGoogle Scholar
  85. Parsell DA, Lindquist S (1994) Heat shock proteins and stress tolerance. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 457–494Google Scholar
  86. Pham TK, Wright PC (2008) The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J Proteome Res. 7(11):4766–4774Google Scholar
  87. Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2 MAPKK. Sci 276:1702–1705CrossRefGoogle Scholar
  88. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Cam Thai T, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 ‘two component’ osmosensor. Cell 86:865–875PubMedCrossRefGoogle Scholar
  89. Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Ariño J (2000) The transcriptional response of yeast to saline stress. J Biological Chem 275:17249–17255CrossRefGoogle Scholar
  90. Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Biores Technol 102(3):3304–3308CrossRefGoogle Scholar
  91. Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol. Curr Trends Biotechnol Pharm Futur Prospect 3(1):8–36Google Scholar
  92. Prior BA, Killian SG, du Preez JC (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis. Proc Biochem 24:21–32Google Scholar
  93. Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microb 63:4005–4009Google Scholar
  94. Ramos J (1999) Contrasting salt tolerance mechanisms in Saccharomyces cerevisiae and Debaryomyces hansenii. Recent Res Dev Microbiol 3:377–390Google Scholar
  95. Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161PubMedGoogle Scholar
  96. Renko M, Valkonen P, Tapiainen T, Kontiokari T, Mattila P, Knuuttila M, Svanberg M, Leinonen M, Karttunen R, Uhari M (2008) Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis. BMC Microbiol 8:45PubMedCrossRefGoogle Scholar
  97. Rep M, Albertyn J, Thevelein J, Prior BA, Hohmann S (1999a) Different signaling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715–727PubMedCrossRefGoogle Scholar
  98. Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999b) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485PubMedGoogle Scholar
  99. Rep M, Krantz M, Thevelein J, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biological Chem 275:8290–8300CrossRefGoogle Scholar
  100. Rodrigues RCLB, William RK, Thomas WJ (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. Ind J Microbiol Biotechnol. doi: 10.1007/s10295-011-0953-4 Google Scholar
  101. Ruis H, Schuller C (1995) Stress signaling in yeast. BioEssays 17:959–965PubMedCrossRefGoogle Scholar
  102. Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hägerdal B (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130Google Scholar
  103. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  104. Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L (2007) Xylose transport studieswith xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052PubMedCrossRefGoogle Scholar
  105. Sampaio FC, da Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from D-xylose. Brazl J Microbiol 34:325–328. Google Scholar
  106. Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282PubMedCrossRefGoogle Scholar
  107. Schmitt AP, McEntee K (1996) Msn2, a zinc finger DNA-binding protein, is the transcriptional activator of the multi stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777–5782PubMedCrossRefGoogle Scholar
  108. Schuffller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389Google Scholar
  109. Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52PubMedCrossRefGoogle Scholar
  110. Singh A, Mishra P (1995) Extraction of pentosans from lignocellulosic materials. In: Singh A, Mishra P (eds) Microbial pentose utilization: current applications in biotechnology. Elsevier, Amsterdam, pp 71–98Google Scholar
  111. Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferment Bioeng 6:564–570Google Scholar
  112. Skoog K, and Hahn-Hagerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394.Google Scholar
  113. Spencer JFT, Spencer DM (1978) Production of polyhydroxy alcohols by osmotolerant yeasts. In: Rose H (eds) Economic microbiology. Primary products of metabolism. Academic Press, London 2:393-425Google Scholar
  114. Tamas MJ, Hohmann S (2003) The osmotic stress response of Saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, BerlinGoogle Scholar
  115. Tamas MJ, Luyten K, Sutherland FCW, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104PubMedCrossRefGoogle Scholar
  116. Tamas MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydstrom J, Mullins JG, Hohmann S (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biological Chem 278:6337–6345CrossRefGoogle Scholar
  117. Tavares JM, Duarte LC, Amaral-Collaco MT, G|èrio FM (1999) Phosphate limitation stress induces xylitol overproduction by Debaryomyces hansenii. FEMS Microbiol Lett 171:115–120CrossRefGoogle Scholar
  118. Teixeira de Mattos MJ, Neijssel OM (1997) Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126PubMedCrossRefGoogle Scholar
  119. Tekolo OM, Mckenzie J, Botha A, Prior BA (2010) The osmotic stress tolerance of basidiomycetous yeasts. FEMS Yeast Res 10(4):482–491PubMedCrossRefGoogle Scholar
  120. Tokuoka K (1993) Sugar and salt-tolerant yeasts. J Appl Bacteriol 74:101–110CrossRefGoogle Scholar
  121. Tomás-Cobos L, Casadomés L, Mas G, Sanz P, Posas F (2004) Expression of the HXT1 transcriptional response of yeast to saline stress. J Biological Chem 275:17249–17255Google Scholar
  122. van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  123. Van Eck JH, Prior BA, Brandt EV (1993) The water relations of growth and polyhydroxy alcohol production by ascomycetous yeasts. J Gen Microbiol 139:1047–1054CrossRefGoogle Scholar
  124. Verdiyn C, Frank J, van Dijken JP, Scheffeis WA (1985) Multiple forms of xylose reductase in Pachysolen tannophilus CBS 4044. FEMS Microbial Lett 30:313–317CrossRefGoogle Scholar
  125. Vongsuvanlert V, Tani Y (1988) Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agric Biol Chem 52:1817–1824CrossRefGoogle Scholar
  126. Wahlbom CF, Cordero ORR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746PubMedCrossRefGoogle Scholar
  127. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315PubMedCrossRefGoogle Scholar
  128. Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883PubMedCrossRefGoogle Scholar
  129. Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401PubMedGoogle Scholar
  130. Werpy T, Peterson G, Aden A, Bozell L, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass, vol I: results of screening for potential candidates from sugars and synthesis gas. US Department of EnergyGoogle Scholar
  131. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferm Bioeng 86:1–14CrossRefGoogle Scholar
  132. Xu P, Bura R, Sharon LD (2011) Genetic analysis of d-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa. Genetics Mol Biol 34(3):471–478Google Scholar
  133. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar
  134. Yoshikawa S, Mitsui N, Chikara K-I, Hashimoto H, Shimosaka HM, Okazaki M (1995) Effect of salt stress on plasma membrane permeability and lipid saturation in salt-tolerant yeast Zygosaccharomyces rouxii. J Ferment Bioeng 80:133–135Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jyosthna Khanna Goli
    • 1
  • Smita Hasini Panda
    • 1
  • Venkateswar Rao Linga
    • 1
    Email author
  1. 1.Department of MicrobiologyOsmania UniversityHyderabadIndia

Personalised recommendations