D-Xylitol pp 63-82 | Cite as

Detoxification Strategies Applied to Lignocellulosic Hydrolysates for Improved Xylitol Production

  • Tandiwe P. Mpabanga
  • Anuj K. Chandel
  • Silvio Silvério da Silva
  • Om V. SinghEmail author


Hemicellulose is the second most abundant renewable biomass after cellulose on the planet. It is one of the three heterogenous polymers, derived from lignocellulose biomass which yields individual sugars, mainly xylose after dilute acid or hydrothermal pretreatment. Among the microbial co-products generated from hemicellulose sugars, xylitol is the most abundant and holds the most valued potential in numerous medical and non-medical applications. During the hemicellulose hydrolysis, in addition to the production of sugars, a number of plant cell wall derived inhibitors are generated as byproducts of the process. It is essential to apply a detoxification strategy to remove the toxic inhibitors from hemicellulosic hydrolysates. This allows for a satisfactory xylitol yield and productive microbial fermentation. During detoxification, several methods such as calcium hydroxide overliming, activated charcoal, and ion-exchange are routinely used to overcome the inhibitors. More recently, biological applications (laccase, direct implication of microorganisms having the affinity towards inhibitors) and systems biology-based approaches have gained significant attraction for the development of microbial traits to counteract the effects of inhibitors while simultaneously fermenting the xylose sugar solution into xylitol. This chapter aims to discuss the various strategies used in the detoxification of lignocellulose hydrolysates for the fermentative production of xylitol. Particular emphasis is placed on the biological applications used for clarification of hemicellulosic syrups with future perspectives.


Lignocellulose hydrolysates Detoxification Biological detoxification Xylitol Fermentation Yeasts 



AKC and SSS are grateful to Bioen-FAPESP and CNPq for the financial support.


  1. Almeida JRM, Modig T, Röder A, Lidén G, Gorwa-Grauslund MF (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol Biofuels 1:12PubMedCrossRefGoogle Scholar
  2. Alriksson B, Horvath IS, Sjöde A, Nilvebrant N-O, Jönsson LJ (2005) Ammonium hydroxide detoxification of Spruce acid hydrolysates. Appl Biochem Biotechnol Symp (Session) 6A:911–922CrossRefGoogle Scholar
  3. Alriksson B, Cavka A, Johnson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in situ detoxification with reducing agents. Bioresour Technol 102:1254–1263PubMedCrossRefGoogle Scholar
  4. Baek S-C, Kwon Y-J (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol Bioprocess Eng 12:404–409CrossRefGoogle Scholar
  5. Bajwa PK, Phaenark C, Grant N, Zhang X, Paice M, Martin VJJ, Trevors JT, Lee H (2011) Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour Technol. doi: 10.1016/j.biotech.2011.08.027 PubMedGoogle Scholar
  6. Balan V, Sousa LC, Chundawat SPS, Mashall D (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods. Biotechnol Prog 12:404–409Google Scholar
  7. Björklund L, Larsson S, Jönsson LJ, Reimann A, Nivebrant NO (2002) Treatment with lignin residue: a novel method for detoxification of lignocellulose hydrolysates. Appl Biochem Biotechnol 98–100:563–575PubMedCrossRefGoogle Scholar
  8. Buhner J, Agblevor FA (2004) Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production. Appl Biochem Biotech 119:13–30CrossRefGoogle Scholar
  9. Canilha L, Carvalho W, Felipe MGA, Silva JBA (2008) Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian J Microbiol 39:333–336CrossRefGoogle Scholar
  10. Cao G, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hyd Ener 34:7182–7188CrossRefGoogle Scholar
  11. Carvalheiro F, Duarte LC, Lopes S, Parajo JC, Pereira H, Girio FM (2006) Supplementation requirements of brewery’s spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. J Ind Microbiol Biotechnol 33:646–654PubMedCrossRefGoogle Scholar
  12. Carvalho W, Canilha L, Mussatto SI, Dragone G, Morales ML, Solenzal AIN (2004) Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. J Chem Technol Biotechnol 79:863–868CrossRefGoogle Scholar
  13. Carvalho GB, Mussatto SI, Cândido EJ, Silva JBA (2006) Comparison of different procedures for the detoxification of Eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81:152–157CrossRefGoogle Scholar
  14. Cavka A, Alriksson B, Ahnlund M, Jönsson LJ (2011) Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnol Bioeng 108:2592–2599PubMedCrossRefGoogle Scholar
  15. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950PubMedCrossRefGoogle Scholar
  16. Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, ISBN 978-90-481-3294-2, Netherland, pp 63–81Google Scholar
  17. Chandel AK, Silva SS, Singh OV (2011a) Detoxification of lignocellulosic hydrolysates for improved bioconversion of bioethanol. In: Bernardes MAS (ed) Biofuel production: recent developments and prospects. InTech, RijekaGoogle Scholar
  18. Chandel AK, Singh OV, Narasu ML, Rao LV (2011b) Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae VS3. New Biotechnol 28:593–599CrossRefGoogle Scholar
  19. Chen X, Jiang Z, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844PubMedCrossRefGoogle Scholar
  20. Cheng K, Zhang J, Ling H, Ping W, Huang W (2008) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis W103. Biochem Eng J 34:203–207Google Scholar
  21. Cheng H, Wang BL, Jiang M, Lin S, Deng Z (2011) Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltose. Microb Cell Fact 10:5PubMedCrossRefGoogle Scholar
  22. Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 3:1035–1043CrossRefGoogle Scholar
  23. Converti A, Perego P, Dominguez JM (1999) Xylitol production from hardwood hemicellulose hydrolysates by P. tannophilus, D. hansenii and C. guilliermondii. Appl Biotechnol Biochem 82:141–151CrossRefGoogle Scholar
  24. Converti A, Dominguez JM, Perego P, Silva SS, Zilli M (2000) Wood Hydrolysis and hydrolysate detoxification of subsequent xylitol production. Chem Eng Technol 23:1013–1019CrossRefGoogle Scholar
  25. Dehkhoda A, Brandberg T, Taherzadeh MJ (2008) Comparison of vacuum and high pressure evaporated wood hydrolysare for ethanol production by repeated fed-batch using flocculating Saccharomyces cerevisiae. BioRes 4:309–320Google Scholar
  26. Fang X, Shen Y, Bao B, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101:4814–4819PubMedCrossRefGoogle Scholar
  27. Griffin GJ, Shu L (2004) Solvent extraction and purification of sugars from hemicelluloses hydroslysates using boronic acid carriers. J Chem Technol Biotechnol 79:505–511CrossRefGoogle Scholar
  28. Grzenia D, Schell DJ, Wickramasinghe SR (2010) Detoxification of biomass hydrolysates by reactive membrane extraction. J Membr Sci 348:6–12CrossRefGoogle Scholar
  29. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104PubMedCrossRefGoogle Scholar
  30. Huang CF, Jiang Y, Guo G, Hwang W (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329PubMedCrossRefGoogle Scholar
  31. Jonsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hagerdal B (1998) Detoxification of wood hydrolysate with laccase and peroxidase from the white-rot fungus T. versicolor. Appl Microbiol Biotechnol 49:691–697CrossRefGoogle Scholar
  32. Kolb M, Sieber V, Amann M, Faulstich M, Scheieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol 104:298–304PubMedCrossRefGoogle Scholar
  33. Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170PubMedCrossRefGoogle Scholar
  34. Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 77–79:547–559PubMedCrossRefGoogle Scholar
  35. Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825PubMedCrossRefGoogle Scholar
  36. Maddox IS, Murray AE (1983) Production of n-butanol by fermentation of wood hydrolysate. Biotechnol Lett 5:175–178CrossRefGoogle Scholar
  37. Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Johnsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282CrossRefGoogle Scholar
  38. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536PubMedCrossRefGoogle Scholar
  39. Marton JM, Felipe MGA, Silva JBA, Pessoa A Jr (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Braz J Chem Eng 23:9–21CrossRefGoogle Scholar
  40. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26PubMedCrossRefGoogle Scholar
  41. Miyafuji H, Danner H, Neureiter M, Thomasser C, Bvochora J, Szolar O, Braun R (2003) Detoxification of wood hydrolysates by wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb Technol 32:396–400CrossRefGoogle Scholar
  42. Moreno AD, Ibarra D, Fernandez JL, Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109PubMedCrossRefGoogle Scholar
  43. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedCrossRefGoogle Scholar
  44. Mussatto SI, Roberto SI (2004) Alternative for detoxification of dilution-acid lignocelluosic hydolyzates for use in fermentative process: a review. Bioresour Technol 93:1–10PubMedCrossRefGoogle Scholar
  45. Mussatto SI, Santos JC, Roberto IC (2004) Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:590–596CrossRefGoogle Scholar
  46. Nilvebrant N-O, Reimann A, Larsson S, Jönsson LJ (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91(93):35–49PubMedCrossRefGoogle Scholar
  47. Palmqvist E, Hahn-Hagerdal B (2000a) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification: review. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  48. Palmqvist E, Hahn-Hagerdal B (2000b) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition: review. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  49. Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24CrossRefGoogle Scholar
  50. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31PubMedCrossRefGoogle Scholar
  51. Persson P, Andersson J, Gorton L, Larsson S, Nilvebrant N-O, Jönsson LJ (2002) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agr Food Chem 50:5318–5325CrossRefGoogle Scholar
  52. Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Phar 3:8–36Google Scholar
  53. Qi B, Luo J, Chen X, Hang X, Wan Y (2011) Separation of furfural from monosaccharides by nanofiltration. Bioresour Technol 14:7111–7118CrossRefGoogle Scholar
  54. Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134:273–283PubMedCrossRefGoogle Scholar
  55. Ranjan R, Thust S, Gounaris CE, Woo M, Floudas CA, Keitz M, Valentas KJ, Wei J, Tsapatsis M (2009) Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolysates for improved ethanol yield and value added product recovery. Microp Mesop Mat 122:143–148CrossRefGoogle Scholar
  56. Rodrigues RCLB, Felipe MGA, Silva JBA, Vitolo M, Villa PV (2001) The influence of pH, temperature and hydrolysate concentration on the removal of volatile and non-volatile compounds from sugarcane bagasse hemicellulosic hydrolysate treated with activated charcoal before or after vacuum evaporation. Braz J Chem Eng 18:299–311CrossRefGoogle Scholar
  57. Sampaio FC, Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from d-xylose. Braz J Microbiol 34:321–324CrossRefGoogle Scholar
  58. Sene L, Arruda PV, Oliveira SMM, Felipe MGA (2011) Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Braz J Microbiol 42:3CrossRefGoogle Scholar
  59. Silva CJSM, Roberto IC (2001) Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Appl Microbiol 32:248–252CrossRefGoogle Scholar
  60. Stoutenburg RM, Perrotta JA, Amidon TE, Nakas JP (2008) Ethanol production from a membrane purified hemicellulosic hydrolysate derived from sugar maple by Pichia stipitis NRRL Y-7124. Bioresources 3:4Google Scholar
  61. Telli-Okur M, Eken-Saraçoğlu N (2008) Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 99:2162–2169PubMedCrossRefGoogle Scholar
  62. Tran AV, Chambers RP (1986) Ethanol fermentation of red oak prehydrolysate by the yeast Pichia stipitis CBS 5776. Enzyme Microb Technol 8:439–444CrossRefGoogle Scholar
  63. Vieira CD, Roberto IC (2010) Improved xylitol production in media containing phenolic aldehydes: application of response surface methodology for optimization and modeling of bioprocess. J Chem Technol Biotechnol 85:1097–4660Google Scholar
  64. Villarreal MLM, Prata AMR, Felipe MGA, Silva JBA (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24CrossRefGoogle Scholar
  65. Wang B, Feng H (2010) Detoxification of lignocellulosic hydrolysates. In: Blaschek HP, Ezeji TC, Scheffran J (eds) Biofuels from agricultural wastes and by-products. Wiley-Blackwell, Oxford. doi: 10.1002/9780813822716.ch11
  66. Watanabe T, Watanabe I, Yamamoto MI, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102:1844–1848PubMedCrossRefGoogle Scholar
  67. Wickramasinghe SR, Grzenia D (2008) Adsorptive membranes and resins for acetic acid removal from biomass hydrolysates. Desalination 234:144–151CrossRefGoogle Scholar
  68. Wilson JJ, Deschatelets L, Nishikawa NK (1989) Comparative fermentability of enzymatic and acid hydrolysates of steam pretreated aspen wood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol 31:592–596CrossRefGoogle Scholar
  69. Zautsen RRM, Maugeri-Filho F, Vaz-Rossell CE, Straathof AJJ, van der Wielen LAM, de Bont JAM (2009) Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate. Biotechnol Bioeng 102:1354–1360PubMedCrossRefGoogle Scholar
  70. Zhu JJ, Yong Q, Xu Y, Yu SY (2009) Comparative detoxification of vacuum evaporation/steam stripping combined with overliming on corn stover prehydrolyzate. Proceedings of the 2009 international conference on energy and environmental technology, vol 3, pp 240–243Google Scholar
  71. Zhuang J, Li L, Pang C (2012) Detoxification of wheat straw formic acid hydrolysis and xylitol production. Adv Mat Res 383–390:5453–5457Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tandiwe P. Mpabanga
    • 1
  • Anuj K. Chandel
    • 2
  • Silvio Silvério da Silva
    • 2
  • Om V. Singh
    • 1
    Email author
  1. 1.Division of Biological and Health SciencesUniversity of PittsburghBradfordUSA
  2. 2.Department of Biotechnology, School of Engineering of LorenaUniversity of São PauloLorenaBrazil

Personalised recommendations