Advertisement

D-Xylitol pp 267-289 | Cite as

Key Drivers Influencing the Large Scale Production of Xylitol

  • Zhang Hou-RuiEmail author
Chapter

Abstract

The technologies related to xylitol production by fermentation have progressed significantly and become industrialized. To further increase the market competitiveness of fermentative xylitol production on a commercial scale, it is necessary to ascertain the main links affecting the production cost, and accurately formulate the effective strategy to reduce the xylitol production costs. From the aspect of xylitol commercial production, this paper focuses on analyzing the main steps influencing the production costs of fermentative xylitol mass production, and the comparative advantages of the fermentation process are also discussed. Some important sectors, which influence the cost of xylitol fermentation production on a massive scale, are further illustrated. It mainly includes the applicability assessment of raw materials, integration of products purification technologies, etc. Basing on this, the suggestions on how to use the comparative advantages of xylitol fermentation process to establish a highly commercially viable processing strategy are made, and some opinions on how to integrate the xylitol manufacturing unit with the biorefinery are added.

Keywords

Xylitol Hemicellulose hydrolysate Fermentation Mass production 

References

  1. Branco RF, Santos JC, Silva SS (2011) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioener 35:3241–3246CrossRefGoogle Scholar
  2. Bustos G, Ramírez JA, Garrote G et al (2003) Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid. Appl Biochem Biotech 104:51–68CrossRefGoogle Scholar
  3. Duarte LC, Carvalheiro F, Tadeu J et al (2006) The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology. Appl Biochem Biotech 129–132:461–475CrossRefGoogle Scholar
  4. Fonseca BG, Moutta RO, Ferraz FO (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. J Ind Microbiol Biotechnol 38(1):199–207PubMedCrossRefGoogle Scholar
  5. Huang CF, Jiang YF, Guo GL et al (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329PubMedCrossRefGoogle Scholar
  6. Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53:106–113PubMedCrossRefGoogle Scholar
  7. Jin S-R (2008) Production technology and application of sugar alcohol (in Chinese). China Light Industry Press, BeijingGoogle Scholar
  8. Kim TB, Lee YJ, Kim P et al (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnol Lett 26:623–627PubMedCrossRefGoogle Scholar
  9. Ko BS, Kim DM, Yoon BH et al (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213PubMedCrossRefGoogle Scholar
  10. Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosc Bioeng 101(1):13–18CrossRefGoogle Scholar
  11. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioener 23:367–380CrossRefGoogle Scholar
  12. Lee JW, Zhu JY, Scordia D et al (2011) Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up. Appl Biochem Biotechnol 165:814–822. doi: 10.1007/s12010-011-9299-7 PubMedCrossRefGoogle Scholar
  13. López F, Delgado OD, Martínez MA et al (2004) Characterization of a new xylitol-producer Candida tropicalis strain. Ant van Leeuwenhoek 85:281–286CrossRefGoogle Scholar
  14. Luo C, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioener 22:125–138CrossRefGoogle Scholar
  15. Martinez A, Rodriguez M, York SW et al (2000) Effects of Ca(OH)2 treatments (overliming) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotech Bioeng 69(5):526–535CrossRefGoogle Scholar
  16. Mikkola JP, Salmi T (2001) Three-phase catalytic hydrogenation of xylose to xylitol prolonging the catalyst activity by means of on-line ultrasonic treatment. Catal Today 64:271–277CrossRefGoogle Scholar
  17. Mikkola JP, Vainio H, Salmi T et al (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A Gen 196:143–155CrossRefGoogle Scholar
  18. Murzin DY, Mäki-Arvela P, Salmi T et al (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666PubMedCrossRefGoogle Scholar
  19. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10PubMedCrossRefGoogle Scholar
  20. Mussatto SI, Dragone G, Roberto IC (2005) Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Proc Biochem 40:3801–3806CrossRefGoogle Scholar
  21. Mussatto SI, Silva CJSM, Roberto IC (2006) Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Appl Microbiol Biotechnol 72:681–686PubMedCrossRefGoogle Scholar
  22. Oliva JM, Ballesteros I, Negro MJ et al (2004) Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnol Prog 20:715–720PubMedCrossRefGoogle Scholar
  23. Olsson L, Hahn-Hagerbal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331CrossRefGoogle Scholar
  24. Ooi BG, Le TTB, Markuszewski BM (2002) Tthe effects of glucose on the yeast conversion of xylose into xylitol by Candida guilliermondii and Candida tropicalis. EJEAF Che 1(3):189–202Google Scholar
  25. Paiva JE, Maldonade IR, Scamparini ARP (2009) Xylose production from sugarcane bagasse by surface response methodology. R Bras Eng Agríc Ambiental 13(1):75–80Google Scholar
  26. Pereira RS, Mussatto SI, Roberto IC (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J Ind Microbiol Biotechnol 38:71–78PubMedCrossRefGoogle Scholar
  27. Petersson A, Almeida JRM, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464PubMedCrossRefGoogle Scholar
  28. Prakash G, Varma AJ, Prabhune A et al (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308PubMedCrossRefGoogle Scholar
  29. Rahman SHA, Choudhury JP, Ahmad AL et al (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol 98:554–559PubMedCrossRefGoogle Scholar
  30. Ranatunga TD, Jervis J, Helm RF et al (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganic, uronic acids and ether-solube organics. Enzyme Microb Technol 27:240–247PubMedCrossRefGoogle Scholar
  31. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  32. Sheu DC, Duan KJ, Jou SR et al (2003) Production of xylitol from Candida tropicalis by using an oxidation–reduction potential-stat controlled fermentation. Biotechnol Lett 25:2065–2069PubMedCrossRefGoogle Scholar
  33. Silva SS, Afschar AS (1994) Microbial production of xylitol from d-xylose using Candida tropicalis. Biopro Engineer 11:129–134CrossRefGoogle Scholar
  34. Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81:1294–1300CrossRefGoogle Scholar
  35. Sitarz R, Bochenek R, Antos D (2011) Design of continuous ion exchange process for the wastewater treatment. Chem Eng Sci 66(23):6209–6219CrossRefGoogle Scholar
  36. Villarreal MLM, Prata AMR, Felip MGA et al (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24CrossRefGoogle Scholar
  37. Wang GS, Lee JW, Zhu JY et al (2011) Dilute acid pretreatment of corncob for efficient sugar production. Appl Biochem Biotechnol 163:658–668. doi: 10.1007/s12010-010-9071-4 PubMedCrossRefGoogle Scholar
  38. Yahashi Y, Hatsu M, Horitsu H et al (1996) d-glucose feeding for improvement of xylitol productivity from d-xylose using Candida tropicalis immoblized on a non-woven fabric. Biotechnology 18(12):1395–1400Google Scholar
  39. Zhang HR, Qin XX, Silva SS et al (2009) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152(2):199–212CrossRefGoogle Scholar
  40. Zhao H, Wu GF, Zhang KC (2003) Technology study of normal pressure acid hydrolysis on corncob hemicellulose. J Nat Sci Heil Univ 20(1):118–121Google Scholar
  41. Zhuang J, Liu Y, Wu Z et al (2009) Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. Bio Res 4(2):674–686Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Hytochemical Department, Guangxi Institute of BotanyThe Chinese Academy of SciencesGuilinPeople’s Republic of China

Personalised recommendations