D-Xylitol pp 229-244 | Cite as

An Assessment on Xylitol Recovery Methods

  • Bahar AliakbarianEmail author
  • Danilo de Faveri
  • Patrizia Perego
  • Attilio Converti


The interest in dietary sugars and polyols has increased considerably in recent years, as they are candidates for many commercial applications in different sectors like food and pharmaceutical industries. This chapter aimed at providing an overview on the xylitol recovery using different approaches. After a brief description of the applications of such an important polyol component in the food and medicine industries along with its physicochemical properties, the traditional ways of providing xylitol, specifically the chemical synthesis, are described and compared with the new biotechnological options. Emphasis has been addressed on the present literature on xylitol recovery assessment, specifically focusing on xylitol recovery by crystallization. The effects of the most influencing factors such as pretreatment, initial xylitol super saturation value, crystallization temperature as well as solvent on xylitol recovery were discussed. The chapter points out that even if in the last few years xylitol crystallization has drawn more attention, important research efforts are still required to develop downstream technologies able to economically recover this compound in a very pure form, suitable for commercial purposes.


Xylitol recovery Crystallization Membrane separation Chromatographic separation 


  1. Affleck RP (2000) Recovery of xylitol from fermentation of model hydrolysate using membrane technology. Thesis of Master of Science, State University of VirginiaGoogle Scholar
  2. Belter PA, Cussler EL, Hu WS (1988) Bioseparations: downstream processing for biotechnology. Wiley, New YorkGoogle Scholar
  3. Converti A, Perego P, Domínguez JM (1999) Xylitol production from hardwood hemicellulose hydrolysates by Pachysolen tannophilus, Debaryomyces hansenii, and Candida guilliermondii. Appl Biochem Biotechnol 82:141–151CrossRefGoogle Scholar
  4. Converti A, Perego P, Torre P, Silva SS (2000) Mixed inhibitions by methanol, furfural and acetic acid on xylitol production by Candida guilliermondii. Biotechnol Lett 22:1861–1865CrossRefGoogle Scholar
  5. Converti A, Perego P, Domínguez JM, Silva SS (2001) Effect of temperature on the microaerophilic metabolism of Pachysolentannophilus. Enzyme Microbiol Technol 28:339–345CrossRefGoogle Scholar
  6. Counsell JN (1978) Xylitol. Applied Science Publishers, LondonGoogle Scholar
  7. Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2000) Xylitol production from barley bran hydrolysates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22:1895–1898CrossRefGoogle Scholar
  8. de Faveri D, Perego P, Converti A, Del Borghi M (2002) Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J 90:291–298CrossRefGoogle Scholar
  9. de Faveri D, Torre P, Perego P, Converti A (2004) Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology. J Food Eng 61:407–412CrossRefGoogle Scholar
  10. Derenzo S, Shimizu Günther PA, Giulietti M (1996) On the behavior of adipic acid aqueous solution batch cooling crystallization, crystal growth of organic materials, ACS-Conference Series. In: Myerson A, Green D, Meenan P (eds) American Chemical Society, Washington, pp 145–150Google Scholar
  11. Domínguez JM, Gong GS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by yeasts. Appl Biochem Biotechnol 57(58):49–56PubMedCrossRefGoogle Scholar
  12. Duross JW (1992) Melt crystallized xylitol. US Patent 5,139,795Google Scholar
  13. Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997) Environmental parameters affecting xylitol production from sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii. J Ind Microbiol Biotechnol 18:251–254CrossRefGoogle Scholar
  14. Georgieff M, Moldawer LL, Bistrian BR (1985) Xylitol, an energy source for intravenous nutrition after trauma. J Parent Enter Nutr 9:199–207CrossRefGoogle Scholar
  15. Gírio FM, Roseiro JC, Sá-Machado P, Duarte-Reis AR, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Technol 16:1074–1078CrossRefGoogle Scholar
  16. Gírio FM, Amaro C, Azinheira H, Pelica F, Amaral-Collaço MT (2000) Polyols production during single and mixed substrate fermentation in Debaryomyces hansenii. Bioresour Technol 71:245–251CrossRefGoogle Scholar
  17. Giulietti M, Derenzo S, Nývlt J, Ishida LK (1995) Crystallization of copper sulfate. Cryst Res Technol 30:177–183CrossRefGoogle Scholar
  18. Giulietti M, Seckler MM, Derenzo S, Valarelli JV(1996) Changes in copper sulfate crystal habit during cooling crystallization. J Cryst Growth 166:1089–1093Google Scholar
  19. Giulietti M, Seckler MM, Derenzo S, Schiavon LH, Valarelli JV, Nývlt J (1999) Effect of selected parameters on crystallization of copper sulphate pentahydrate. Cryst Res Technol 34:959–967CrossRefGoogle Scholar
  20. Giulietti M, Seckler MM, Derenzo S, Ré MI, Cekinski E (2001) Industrial crystallization and precipitation from solutions: state of the technique. Braz J Chem Eng 18:423–440CrossRefGoogle Scholar
  21. Glasgow SM (1983) In: Vogel HC (ed) Crystallization, in fermentation and biochemical engineering handbook. Noyes, Park Ridge, pp 277–295Google Scholar
  22. Guerrieri G (1998) I processi e gli impianti di cristallizzazione nell’industria alimentare. Tecnol Aliment 1:126–142Google Scholar
  23. Gurgel PV, Mancilha IM, Pecanha RP, Siqueira JFM (1995) Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresour Technol 52:219–223CrossRefGoogle Scholar
  24. Gurgel PV, Furlan SA, Martinez SER, Mancilha IM (1998) Evaluation of sugarcane bagasse acid hydrolyzate treatments for xylitol production. Braz J Chem Eng 15:309–312CrossRefGoogle Scholar
  25. Heikkila H, Puuppo O, Tylli M, Nikander H, Nygren J, Lindroos M, Eroma O (1999) Method for producing xylitol. US Patent 5,998,607Google Scholar
  26. Hyuönen L, Koivistoinen P (1982) Food technological evaluation of xylitol. In: Voirol F (ed) Advances in food research. Xyrofen Ltd, SwitzerlandGoogle Scholar
  27. Jaffe GM (1978) Xylitol—a specialty sweetener. Sugar Azucar 93:36–42Google Scholar
  28. Kiysawa K (1991) Volumetric properties of polyols (ethylene glycol, glycerol, mesoerythritol, xylitol and mannitol) in relation to their membrane permeability group 92 additivity and estimation of the maximum radius of their molecules. Biochim Biophys Acta 1064:251–255CrossRefGoogle Scholar
  29. Kontiokari T, Uhani M, Koslela M (1995) Effect of xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother 39:1820–1823PubMedCrossRefGoogle Scholar
  30. Makinen KK (1994) Chapter 11: sugar alcohols. In: Goldbery I (ed) Functional foods, designer foods, pharmafoods, nutraceuticals. Chapman & Hall, New York, pp 219–241Google Scholar
  31. Martínez EA, Silva JB, Giulietti M, Solenzal AIN (2007) Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb Technol 40:1193–1198CrossRefGoogle Scholar
  32. Mattila PT, Svanberg MH, Makinen KK (1996) Dietary, xylitol, sorbitol and D-mannitol but not erythritol retard bone resorption in rats. J Nutr 126:1865–1870PubMedGoogle Scholar
  33. Melaja AJ, Hamalainen L (1977) Process for making xylitol. US Patent 4,008, 285Google Scholar
  34. Misra S, Pritesh G, Shailendra R, Kakoli D, Saxena RK (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273CrossRefGoogle Scholar
  35. Munir M, Schiweck H (1981) Process for recovering xylitol from end syrups of the xylitol crystallization. US Patent 4,246,431Google Scholar
  36. Mussatto SI, Santos JC, Filho WCR, Silva SS (2006) A study on the recovery of xylitol by batch adsorption and crystallization from fermented sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81:1840–1845CrossRefGoogle Scholar
  37. Myerson AS (ed) (1999) Molecular modeling applications in crystallization. Cambridge University Press, New YorkGoogle Scholar
  38. Natah SS, Hussein KR, Tuominen JA (1997) Metabolic responses to lactitol and xylitol in health men. Am J Clin Nutr 65:947–950PubMedGoogle Scholar
  39. Nestl B, Seibel W, Menden E (1989) Verwendung von Zuckerauschstoffen und Süßstoffen bei der Herstellung Zweibackähnlicher Extrudate. Getreide Mehl Bröt 43:53–58Google Scholar
  40. Nigam P, Singh D (1995) Processes for fermentative production of xylitol: a sugar substitute. Process Biochem 30:117–124Google Scholar
  41. Nývlt J, Ulrich J (1995) Admixtures in crystallization. VCH Verlagsgesellshaft, WeinheimCrossRefGoogle Scholar
  42. Parajó JC, Domínguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24CrossRefGoogle Scholar
  43. Parajó JC, Domínguez H, Domínguez JM (1998a) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201CrossRefGoogle Scholar
  44. Parajó JC, Domínguez H, Domínguez JM (1998b) Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour Technol 66:25–40CrossRefGoogle Scholar
  45. Roberto I, Sato S, Mancilha IM (1996) Effect of inoculum level on xylitol production from rice straw hemicellulose hydrolysate by Candida guilliermondii. J Ind Microbiol 16:348–350PubMedCrossRefGoogle Scholar
  46. Saha BC, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington. pp 307–319Google Scholar
  47. Sampaio FC, Lopes Passos FM, Vieira Passos FJ, de Faveri D, Perego P, Converti A (2006) Xylitol crystallization from culture media fermented by yeasts. Chem Eng Process 45:1041–1046CrossRefGoogle Scholar
  48. Sommer R (1996) Production of yeast extracts. Presented at the 9th International Symposium on Yeasts, SydneyGoogle Scholar
  49. Svanberg M, Knuuttila MLE (1994) Dietary xylitol retards bone resorption in rats. Miner Electrolyte Metab 20:153–157PubMedGoogle Scholar
  50. Uhari M, Kontiokari I, Koskela M (1996) Xylitol chewing gum in prevention of acute otitis media. Br Med J 313:1180–1183CrossRefGoogle Scholar
  51. Uhari M, Kontiokari T, Niemela M (1998) A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 102:879–884PubMedCrossRefGoogle Scholar
  52. Vourinen T (1996) Production of xylitol. US Patent 5,563,303Google Scholar
  53. Vyglazov VV, Kind VD, Khol’Kin YU, Stasenkova IE, Syrovatkina ME (1990) Effect of colored products from thermal degradation of D-xylose on the crystallization of xylitol. Gidroliz Lesokhim Prom-st 6:13–14Google Scholar
  54. Vyglazov VV (2004) Kinetic characteristics of xylitol crystallization from aqueous ethanolic solutions. Russ J Appl Chem 77:26–29CrossRefGoogle Scholar
  55. Winkelhausen E, Kuzmanova S (1998) Review: microbial conversion of D-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRefGoogle Scholar
  56. Ylikahri R (1979) Metabolic and nutritional aspects of xylitol. Adv Food Res 25:159–180PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bahar Aliakbarian
    • 1
    Email author
  • Danilo de Faveri
    • 1
  • Patrizia Perego
    • 1
  • Attilio Converti
    • 1
  1. 1.Department of Chemical and Process Engineering “G.B. Bonino”Genoa UniversityGenoaItaly

Personalised recommendations