Advertisement

D-Xylitol pp 3-37 | Cite as

Deconstruction of the Hemicellulose Fraction from Lignocellulosic Materials into Simple Sugars

  • Francisco M. GírioEmail author
  • Florbela Carvalheiro
  • Luís C. Duarte
  • Rafał Bogel-Łukasik
Chapter

Abstract

Hemicelluloses hold a great promise for the production of added-value compounds in the biorefinery framework. Specifically, the xylan-rich hemicelluloses from hardwoods and agro-industrial residues present themselves as effective feedstock choices for the biotechnological production of xylitol. This paper reviews the various hemicellulose structures present in such materials and critically evaluates the available processing options to produce xylose-rich fermentable hydrolysates. Currently, acid-based processes still present the best trade-off between operation easiness and xylose yield and recovery. Nevertheless, concerns regarding the impact of the fractionation processes on the overall upgradability of all biomass fractions (namely, cellulose and specially lignin) may turn the route to other strategies. Specifically, the combined/sequential use of processes targeting hemicellulose dissolution and hydrolysis might hold great promise for the economical production of pentoses.

Keywords

Lignocellulose Hemicellulose Hydrolysis Enzymatic hydrolysis Xylose 

References

  1. Aguilar R, Ramírez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318CrossRefGoogle Scholar
  2. Akpinar O, Ak O, Kavas A, Bakir U, Yilmaz L (2007) Enzymatic production of xylooligosaccharides from cotton stalks. J Agri Food Chem 55:5544–5551CrossRefGoogle Scholar
  3. Akpinar O, Gunay K, Yilmaz Y, Levent O, Bostanci S (2010) Enzymatic processing and antioxidant activity of agricultural waste autohydrolysis liquors. Bioresources 5:699–711Google Scholar
  4. Alén R (2000) Structure and chemical composition of wood. In: Stenius P (ed) Forest products chemistry. Fapet Oy, HelsinkiGoogle Scholar
  5. Allen SG, Kam LC, Zemann AJ, Antal MJ (1996) Fractionation of sugar cane with hot, compressed, liquid water. Ind Eng Chem Res 35:2709–2715CrossRefGoogle Scholar
  6. Allen SG, Schulman D, Lichwa J, Antal MJ, Jennings E, Elander R (2001a) A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Ind Eng Chem Res 40:2352–2361CrossRefGoogle Scholar
  7. Allen SG, Schulman D, Lichwa J, Antal MJ, Laser M, Lynd LR (2001b) A comparison between hot liquid water and steam fractionation of corn fiber. Ind Eng Chem Res 40:2934–2941CrossRefGoogle Scholar
  8. Aoyama M, Seki K, Saito N (1995) Solubilization of bamboo grass xylan by steaming treatment. Holzforschung 49:193–196CrossRefGoogle Scholar
  9. Balan V, Sousa LD, Chundawat SPS, Vismeh R, Jones AD, Dale BE (2008) Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. J Ind Microbiol Biotechnol 35:293–301PubMedCrossRefGoogle Scholar
  10. Ballesteros I, Oliva JM, Navarro AA, González A, Carrasco J, Ballesteros M (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotechnol 84–6:97–110CrossRefGoogle Scholar
  11. Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochem 38:187–192CrossRefGoogle Scholar
  12. Belkacemi K, Hamoudi S (2003) Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling. J Chem Technol Biotechnol 78:802–808CrossRefGoogle Scholar
  13. Belkacemi K, Turcotte G, de Halleux D, Savoie P (1998) Ethanol production from AFEX-treated forages and agricultural residues. Appl Biochem Biotechnol 70–2:441–462CrossRefGoogle Scholar
  14. Belkacemi K, Turcotte G, Savoie P (2002) Aqueous/steam-fractionated agricultural residues as substrates for ethanol production. Ind Eng Chem Res 41:173–179CrossRefGoogle Scholar
  15. Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577PubMedCrossRefGoogle Scholar
  16. Blair RG, Hick SM, Truitt JH. (2009) Solid acid catalyzed hydrolysis of cellulosic materials. U.S. Patent. WO/2009/061750Google Scholar
  17. Bogel-Lukasik E, Lourenco C, Zakrzewska ME, Bogel-Łukasik R (2010) Insight into the phase equilibrium phenomena of systems containing dienes and dicyanamide ionic liquids as a new potential application. J Phys Chem B 114:15605–15609PubMedCrossRefGoogle Scholar
  18. Boussaid A, Cai YJ, Robinson J, Gregg DJ, Nguyen Q, Saddler JN (2001) Sugar recovery and fermentability of hemicellulose hydrolysates from steam-exploded softwoods containing bark. Biotechnol Prog 17:887–892PubMedCrossRefGoogle Scholar
  19. Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100:6537–6542PubMedCrossRefGoogle Scholar
  20. Brillouet JM, Joseleau JP, Utille JP, Lelievre D (1982) Isolation, purification, and characterization of a complex heteroxylan from industrial wheat bran. J Agri Food Chem 30:488–495CrossRefGoogle Scholar
  21. Bustos G, Moldes AB, Cruz JM, Domínguez JM (2004) Production of fermentable media from vine-trimming wastes and bioconversion into lactic acid by Lactobacillus pentosus. J Sci Food Agri 84:2105–2112CrossRefGoogle Scholar
  22. Camacho F, González-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J Chem Technol Biotechnol 67:350–356CrossRefGoogle Scholar
  23. Canettieri EV, Silva JB, Felipe MGA (2001) Application of factorial design to the study of xylitol production from eucalyptus hemicellulosic hydrolysate. Appl Biochem Biotechnol 94:159–168PubMedCrossRefGoogle Scholar
  24. Canilha L, Carvalho W, Silva JBAE (2006) Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolyzate fermentation. J Sci Food Agri 86:1371–1376CrossRefGoogle Scholar
  25. Canilha L, Santos VTO, Rocha GJM, Silva JBAE, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475PubMedCrossRefGoogle Scholar
  26. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206PubMedCrossRefGoogle Scholar
  27. Caparros S, Garrote G, Ariza J, Diaz MJ, Lopez F (2007) Xylooligosaccharides production from Arundo donax. J Agri Food Chem 55:5536–5543CrossRefGoogle Scholar
  28. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700CrossRefGoogle Scholar
  29. Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants—consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3:1–30PubMedCrossRefGoogle Scholar
  30. Carrasco F (1989) Fundamentos del faccionamiento de la biomassa. Afinidad 46:425–429Google Scholar
  31. Carvalheiro F, Duarte LC, Medeiros R, Gírio FM (2004a) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113–116:1059–1072PubMedCrossRefGoogle Scholar
  32. Carvalheiro F, Esteves MP, Parajó JC, Pereira H, Gírio FM (2004b) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91:93–100PubMedCrossRefGoogle Scholar
  33. Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gírio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40:1215–1223CrossRefGoogle Scholar
  34. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Scientific Ind Res 67:849–864Google Scholar
  35. Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93PubMedCrossRefGoogle Scholar
  36. Carvalho W, Batista MA, Canilha L, Santos JC, Converti A, Silva SS (2004) Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:1308–1312CrossRefGoogle Scholar
  37. Chornet E, Overend RP (1988) Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. Proceedings of the international workshop on steam explosion techniques: fundamentals and industrial applications, Milan, Italy, 20–21 OctGoogle Scholar
  38. Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231PubMedCrossRefGoogle Scholar
  39. Chung B, Kim C, Chung I, Balagopal V, Lee Y (1992) On fermentability of nafion catalyzed hemicellulose hydrolyzates. Appl Biochem Biotechnol 34–35:125–129CrossRefGoogle Scholar
  40. Conceicao L, Bogel-Łukasik R, Bogel-Lukasik E (2012) Supercritical CO2 as an effective medium for a novel conversion of glycerol and alcohols in the heterogeneous telomerisation of butadiene. Green Chem 14:673–681CrossRefGoogle Scholar
  41. Conceição LJA, Bogel-Lukasik E, Bogel-Łukasik R (2012) A new outlook on solubility of carbohydrates and sugar alcohols in ionic liquids. RSC Adv 2:1846–1855CrossRefGoogle Scholar
  42. Conner AH (1984) Kinetic modeling of hardwood prehydrolysis. Part I. Xylan removal by water prehydrolysis. Wood Fiber Sci 16:268–277Google Scholar
  43. Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2001) Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J Agri Food Chem 49:2459–2464CrossRefGoogle Scholar
  44. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522PubMedCrossRefGoogle Scholar
  45. Dekker RFH (1988) Inhibitors of Trichoderma reesei β-glucosidase activity derived from autohydrolysis exploded Eucalyptus regnans. Appl Microbiol Biotechnol 29:593–598CrossRefGoogle Scholar
  46. Diz J, Cruz JM, Domínguez H, Parajó JC (2002) Xylitol production from Eucalyptus wood hydrolysates in low-cost fermentation media. Food Technol Biotechnol 40:191–197Google Scholar
  47. Domanska U, Bogel-Łukasik R (2005) Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide. J Phys Chem B 109:12124–12132PubMedCrossRefGoogle Scholar
  48. Duarte LC, Carvalheiro F, Lopes S, Marques S, Parajó JC, Gírio FM (2004) Comparison of two posthydrolysis processes of brewery’s spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Appl Biochem Biotechnol 113–116:1041–1058PubMedCrossRefGoogle Scholar
  49. Duarte LC, Silva-Fernandes T, Carvalheiro F, Gírio FM (2009) Dilute acid hydrolysis of wheat straw oligosaccharides. Appl Biochem Biotechnol 153:116–126PubMedCrossRefGoogle Scholar
  50. Ebringerová A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  51. Edye LA, Doherty WOS (2008) Fractionation of a lignocellulosic material. Patent. PIXXD2WO 2008095252Google Scholar
  52. Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter & Co, BerlinCrossRefGoogle Scholar
  53. Ferrari MD, Neirotti E, Albornoz C, Saucedo E (1992) Ethanol production from Eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnol Bioeng 40:753–759PubMedCrossRefGoogle Scholar
  54. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRefGoogle Scholar
  55. Forte A, Bogel-Lukasik E, Bogel-Łukasik R (2011) Miscibility phenomena in systems containing polyhydroxy alcohols and ionic liquids. J Chem Eng Data 56:2273–2279CrossRefGoogle Scholar
  56. Forte A, Melo CI, Bogel-Łukasik R, Bogel-Lukasik E (2012) A favourable solubility of isoniazid, an antitubercular antibiotic drug, in alternative solvents. Fluid Phase Equilib 318:89–95CrossRefGoogle Scholar
  57. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297PubMedCrossRefGoogle Scholar
  58. Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88CrossRefGoogle Scholar
  59. Garcia-Dieguez C, Salgado JM, Roca E, Domínguez JM (2011) Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes. Bioprocess Biosyst Eng 34:869–878PubMedCrossRefGoogle Scholar
  60. Garrote G, Parajó JC (2002) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123CrossRefGoogle Scholar
  61. Garrote G, Domínguez H, Parajó JC (1999a) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202CrossRefGoogle Scholar
  62. Garrote G, Domínguez H, Parajó JC (1999b) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109CrossRefGoogle Scholar
  63. Garrote G, Domínguez H, Parajó JC (2001a) Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: Posthydrolysis kinetics. Bioresour Technol 79:155–164PubMedCrossRefGoogle Scholar
  64. Garrote G, Domínguez H, Parajó JC (2001b) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578CrossRefGoogle Scholar
  65. Garrote G, Domínguez H, Parajó JC (2001c) Manufacture of xylose-based fermentation media from corncobs by posthydrolysis of autohydrolysis liquors. Appl Biochem Biotechnol 95:195–207PubMedCrossRefGoogle Scholar
  66. Garrote G, Yañez R, Alonso JL, Parajó JC (2008) Coproduction of oligosaccharides and glucose from corncobs by hydrothermal processing and enzymatic hydrolysis. Ind Eng Chem Res 47:1336–1345CrossRefGoogle Scholar
  67. Goldstein IS (1983) Acid processes for cellulose hydrolysis and their mechanisms wood and agricultural residues. Academic Press Inc., New YorkGoogle Scholar
  68. Grohmann K, Torget R, Himmel M (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 15:59–80Google Scholar
  69. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasic R (2010) Hydrolysis of hemicelluloses for fuel ethanol: a review. Biores Technol 101:4775–4800CrossRefGoogle Scholar
  70. Gullón P, González-Muñoz MJ, Domínguez H, Parajó JC (2008) Membrane processing of liquors from Eucalyptus globulus autohydrolysis. J Food Eng 87:257–265CrossRefGoogle Scholar
  71. Hahn-Hägerdal B, Skoog K, Mattiason B (1984) Solid superacids for hydrolyzing oligosaccharides and polysaccharides. Ann N Y Acad Sci 434:161–163CrossRefGoogle Scholar
  72. Heitz M, Carrasco F, Rubio M, Chauvette G, Chornet E, Jaulin L, Overend RP (1986) Generalized correlations for the aqueous liquefaction of lignocellulosics. Can J Chem Eng 64:647–650CrossRefGoogle Scholar
  73. Heitz M, Capek-Menard E, Koeberle PG, Gagné J, Chornet E, Overend RP, Taylor JD, Yu E (1991) Fractionation of Populus tremuloides at the pilot-plant scale—optimization of steam pretreatment conditions using the stake-II technology. Bioresour Technol 35:23–32CrossRefGoogle Scholar
  74. Holtzapple MT, Jun JH, Ashok G, Patibandla SL, Dale BE (1991) The ammonia freeze explosion (AFEX) process—a practical lignocellulose pretreatment. Appl Biochem Biotechnol 28–9:59–74CrossRefGoogle Scholar
  75. Holtzapple MT, Lundeen JE, Sturgis R, Lewis JE, Dale BE (1992) Pretreatment of lignocellulosic municipal solid-waste by Ammonia Fiber Explosion (AFEX). Appl Biochem Biotechnol 34–5:5–21CrossRefGoogle Scholar
  76. Holtzapple MT, Davison RR, Ross MK, Aldrett-Lee S, Nagwani M, Lee CM, Lee C, Adelson S, Kaar W, Gaskin D, Shirage H, Chang NS, Chang VS, Loescher ME (1999) Biomass conversion to mixed alcohol fuels using the MixAlco process. Appl Biochem Biotechnol 77–9:609–631CrossRefGoogle Scholar
  77. Hörmeyer HF, Bonn G, Kim DW, Bobleter O (1987) Enzymatic saccharification of cellulosic materials after hydrothermolysis and organosolv pretreatments. J Wood Chem Technol 7:269–283CrossRefGoogle Scholar
  78. Ishii T (1991) Acetylation at O-2 of arabinofuranose residues in feruloylated arabinoxylan from bamboo shoot cell-walls. Phytochemistry 30:2317–2320PubMedCrossRefGoogle Scholar
  79. Jessop PG, Leitner WE (1999) Introduction. In: Jessop PG, Leitner WE (eds) Chemical synthesis using supercritical fluids. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  80. Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajó JC, Gírio FM, Schols HA, Voragen AGJ (2002) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr Polym 50:47–56CrossRefGoogle Scholar
  81. Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042PubMedCrossRefGoogle Scholar
  82. Kim KH, Hong J (2001) Supercritical CO2 pretratment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144PubMedCrossRefGoogle Scholar
  83. Kim SB, Lee YY (1986) Hydrolysis of hemicellulose by solid superacid. Biotechnol Bioeng Symp 15:81–90Google Scholar
  84. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013PubMedCrossRefGoogle Scholar
  85. Kim TH, Lee YY (2006) Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour Technol 97:224–232PubMedCrossRefGoogle Scholar
  86. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47PubMedCrossRefGoogle Scholar
  87. Kim JS, Kim H, Lee JS, Lee JP, Park SC (2008) Pretreatment characteristics of waste oak wood by ammonia percolation. Appl Biochem Biotechnol 148:15–22PubMedCrossRefGoogle Scholar
  88. Kim Y, Yu A, Han M, Choi GW, Chung B (2010) Ethanosolv pretreatment of barley straw with iron(III) chloride for enzymatic saccharification. J Chem Technol Biotechnol 85:1494–1498Google Scholar
  89. Kin Z (1990) The acetolysis of beech wood. Tappi J 73:237–238Google Scholar
  90. Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption enhanced hydrolysis of beta-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25:5068–5075PubMedCrossRefGoogle Scholar
  91. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26PubMedCrossRefGoogle Scholar
  92. Kokta BV (1991) Steam explosion pulping. In: Focher B, Marzetti A, Crescenzi V (eds) Steam explosion techniques: Fundamentals and applications. Breach Science Publishers, PhiladelphiaGoogle Scholar
  93. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci U S A 106:1368–1373PubMedCrossRefGoogle Scholar
  94. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24PubMedCrossRefGoogle Scholar
  95. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376PubMedCrossRefGoogle Scholar
  96. Li KC, Azadi P, Collins R, Tolan J, Kim JS, Eriksson KEL (2000) Relationships between activities of xylanases and xylan structures. Enzyme Microb Technol 27:89–94CrossRefGoogle Scholar
  97. Liu CG, Wyman CE (2006) The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 °C. Carbohyd Res 341:2550–2556CrossRefGoogle Scholar
  98. Liu QB, Janssen MHA, van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42CrossRefGoogle Scholar
  99. Liu L, Sun JS, Cai CY, Wang SH, Pei HS, Zhang JS (2009) Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour Technol 100:5865–5871PubMedCrossRefGoogle Scholar
  100. Mancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841CrossRefGoogle Scholar
  101. Marcotullio G, de Jong W (2010) Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem 12:1739–1746CrossRefGoogle Scholar
  102. Marcotullio G, Krisanti E, Giuntoli J, de Jong W (2011) Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl(3) solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour Technol 102:5917–5923PubMedCrossRefGoogle Scholar
  103. Martín C, Marcet M, Thomsen AB (2008) Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. Bioresources 3:670–683Google Scholar
  104. Maruyama K, Goto C, Numata M, Suzuki T, Nakagawa Y, Hoshino T, Uchiyama T (1996) O-acetylated xyloglucan in extracellular polysaccharides from cell-suspension cultures of Mentha. Phytochemistry 41:1309–1314PubMedCrossRefGoogle Scholar
  105. Marzialetti T, Olarte MBV, Sievers C, Hoskins TJC, Agrawal PK, Jones CW (2008) Dilute acid hydrolysis of Loblolly pine: a comprehensive approach. Ind Eng Chem Res 47:7131–7140CrossRefGoogle Scholar
  106. Miranda I, Pereira H (2002) Kinetics of ASAM and kraft pulping of eucalypt wood (Eucalyptus globulus). Holzforschung 56:85–90CrossRefGoogle Scholar
  107. Miyafuji H, Nakata T, Ehara K, Saka S (2005) Fermentability of water-soluble portion to ethanol obtained by supercritical water treatment of lignocellulosics. Appl Biochem Biotechnol 121:963–971PubMedCrossRefGoogle Scholar
  108. Moldes AB, Cruz JM, Domínguez JM, Parajó JC (2002) Production of a cellulosic substrate susceptible to enzymatic hydrolysis from prehydrolyzed barley husks. Agric Food Sci Finl 11:51–58Google Scholar
  109. Monavari S, Galbe M, Zacchi G (2009) The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. Biotechnol Biofuels 2:6PubMedCrossRefGoogle Scholar
  110. Moniruzzaman M, Dien BS, Ferrer B, Hespell RB, Dale BE, Ingram LO, Bothast RJ (1996) Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnol Lett 18:985–990CrossRefGoogle Scholar
  111. Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480PubMedCrossRefGoogle Scholar
  112. Mosier N, Wyman CE, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedCrossRefGoogle Scholar
  113. Mussatto SI, Roberto IC (2006) Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J Chem Technol Biotechnol 81:268–274CrossRefGoogle Scholar
  114. Mussatto SI, Dragone G, Rocha GJM, Roberto IC (2006) Optimum operating conditions for brewer’s spent grain soda pulping. Carbohydr Polym 64:22–28CrossRefGoogle Scholar
  115. Mussatto SI, Dragone G, Roberto IC (2007) Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind Crops Prod 25:231–237CrossRefGoogle Scholar
  116. Nabarlatz D, Ebringerová A, Montané D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr Polym 69:20–28CrossRefGoogle Scholar
  117. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58PubMedCrossRefGoogle Scholar
  118. Nguyen QA, Tucker MP (2002) Dilute acid/metal salt hydrolysis of lignocellulosics. U.S. Patent US6423145B1Google Scholar
  119. Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquie J (1999) Ethanol production from lignocellulosic biomass. Oil Gas Sci Technol (Revue de l’ Institut Francais du Petrole) 54:67–94CrossRefGoogle Scholar
  120. Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38:2–7CrossRefGoogle Scholar
  121. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3665PubMedCrossRefGoogle Scholar
  122. Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52:801–807CrossRefGoogle Scholar
  123. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481PubMedCrossRefGoogle Scholar
  124. Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861PubMedCrossRefGoogle Scholar
  125. Parajó JC, Alonso JL, Santos V (1996a) Development of a generalized phenomenological model describing the kinetics of the enzymatic hydrolysis of NaOH-treated pine wood. Appl Biochem Biotechnol 56:289–299PubMedCrossRefGoogle Scholar
  126. Parajó JC, Domínguez H, Domínguez JM (1996b) Xylitol from wood: study of some operational strategies. Food Chem 57:531–535Google Scholar
  127. Parajó JC, Domínguez H, Domínguez JM (1997) Xylitol production from Eucalyptus wood hydrolysates extracted with organic solvents. Process Biochem 32:599–604CrossRefGoogle Scholar
  128. Paulechka YU, Kabo GJ, Blokhin AV, Vydrov OA, Magee JW, Frenkel M (2003) Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state. J Chem Eng Data 48:457–462CrossRefGoogle Scholar
  129. Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G (1990) Fermentation of hardwood hemicelluose hydrolysate by Pachysolen tannophilus, Candida shehatae and Pichia sitpits. J Ind Microbiol 6:157–164CrossRefGoogle Scholar
  130. Pereira H (1988) Variability in the chemical composition of plantation Eucalypts (Eucalyptus globulus Labill). Wood Fiber Sci 20:82–90Google Scholar
  131. Pereira H, Graça J, Rodrigues JC (2003) Wood chemistry in relation to quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell Publishing, OxfordGoogle Scholar
  132. Persson P, Larsson S, Jonsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thorneby L, Gorton L (2002) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79:694–700PubMedCrossRefGoogle Scholar
  133. Pessoa A Jr, Mancilha IM, Sato S (1996) Cultivation of Candida tropicalis in sugar cane hemicellulosic hydrolyzate for microbial protein production. J Biotechnol 51:83–88CrossRefGoogle Scholar
  134. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591PubMedCrossRefGoogle Scholar
  135. Prior BA, Kilian SG, du Preez JC (1989) Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis: prospects and problems. Process Biochem 24:21–32Google Scholar
  136. Puls J, Poutanen K (1989) Mechanisms of enzymic hydrolysis of hemicelluloses (xylans) and procedures for determination of the enzyme activities involved. In: Coughlan MP (ed) Enzyme systems for lignocellulosic degradation. Elsevier Applied Science, LondonGoogle Scholar
  137. Puls J, Poutanen K, Körner HU, Viikari L (1985) Biotechnical utilization of wood carbohydrates after steaming pretreatment. Appl Microbiol Biotechnol 22:416–423CrossRefGoogle Scholar
  138. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRefGoogle Scholar
  139. Rinaldi R, Palkovits R, Schuth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed Engl 47:8047–8050PubMedCrossRefGoogle Scholar
  140. Ritter DC, Campbell AG (1991) Supercritical carbon dioxide extraction of Southern Pine and Ponderosa Pine. Wood Fiber Sci 23:98–113Google Scholar
  141. Rivas B, Domínguez JM, Domínguez H, Parajó JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microb Technol 31:431–438CrossRefGoogle Scholar
  142. Roberto IC, Mancilha IM, Souza CA, Felipe MGA, Sato S, Castro HF (1994) Evaluation of rice straw hemicellulose hydrolysate in the production of xylitol by Candida guilliermondii. Biotechnol Lett 16:1211–1216CrossRefGoogle Scholar
  143. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176CrossRefGoogle Scholar
  144. Rodrigues DCGA, Silva SS, Prata AMR, Felipe MGA (1998) Biotechnological production of xylitol from agroindustrial residues—evaluation of bioprocesses. Appl Biochem Biotechnol 70–72:869–875CrossRefGoogle Scholar
  145. Rodrigues DCGA, Silva SS, Felipe MGA (1999) Fed-batch culture of Candida guilliermondii FTI 20037 for xylitol production from sugar cane bagasse hydrolysate. Lett Appl Microbiol 29:359–363CrossRefGoogle Scholar
  146. Ropars M, Marchal R, Pourquie J, Vandecasteele JP (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. 1. Pretreatment procedures. Bioresour Technol 42:197–204CrossRefGoogle Scholar
  147. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb Technol 42:160–166PubMedCrossRefGoogle Scholar
  148. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  149. Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2012a) Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings. New Biotechnol 29:421–427CrossRefGoogle Scholar
  150. Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2012b) Effect of nutrient supplementation of crude or detoxified concentrated distilled grape marc hemicellulosic hydrolysates on the xylitol production by Debaryomyces hansenii. Prep Biochem Biotechnol 42:1–14PubMedCrossRefGoogle Scholar
  151. Santos JL, Fernandes MC, Lourenço PML, Duarte LC, Carvalheiro F, Crespo JG (2011) Removal of inhibitory compounds from olive stone auto-hydrolysis liquors by nanofiltration. Desalin Water Treat 27:90–96CrossRefGoogle Scholar
  152. Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304PubMedCrossRefGoogle Scholar
  153. Saska M, Ozer E (1995) Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol Bioeng 45:517–523PubMedCrossRefGoogle Scholar
  154. Sazaki C, Kurosmi A, Yamashita Y (2009) Xylitol production from dilute acid hydrolysis of bean group shells. Biomicroworld 2009 III international conference on environmental, industrial and applied microbiology, Lisbon, Portugal, 2–4 Dec, pp 605–609Google Scholar
  155. Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluid 46:299–321CrossRefGoogle Scholar
  156. Schell DJ, Ruth MF, Tucker MP (1999) Modeling the enzymatic hydrolysis of dilute-acid pretreated Douglas fir. Appl Biochem Biotechnol 77–79:67–81CrossRefGoogle Scholar
  157. Sene L, Arruda PV, Oliveira SMM, Felipe MGA (2011) Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian J Microbiol 42:1140–1145CrossRefGoogle Scholar
  158. Sepulveda-Huerta E, Tellez-Luis SJ, Bocanegra-Garcia V, Ramirez JA, Vazquez M (2006) Production of detoxified sorghum straw hydrolysates for fermentative purposes. J Sci Food Agri 86:2579–2586CrossRefGoogle Scholar
  159. Shevchenko SM, Chang K, Robinson J, Saddler JN (2000) Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Bioresour Technol 72:207–211CrossRefGoogle Scholar
  160. Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289CrossRefGoogle Scholar
  161. Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin D, Agrawal PK, Jones CW (2009) Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res 48:1277–1286CrossRefGoogle Scholar
  162. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011PubMedCrossRefGoogle Scholar
  163. Sims IM, Munro SLA, Currie G, Craik D, Bacic A (1996) Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 293:147–172PubMedCrossRefGoogle Scholar
  164. Stephen AM (1983) Other plant polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, New YorkGoogle Scholar
  165. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Michikazu (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793Google Scholar
  166. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRefGoogle Scholar
  167. Sun YS, Lu XB, Zhang R, Wang XY, Zhang ST (2011) Pretreatment of corn stover silage with Fe(NO(3))(3) for fermentable sugar production. Appl Biochem Biotechnol 164:918–928PubMedCrossRefGoogle Scholar
  168. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedCrossRefGoogle Scholar
  169. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665CrossRefGoogle Scholar
  170. Tellez-Luis SJ, Ramirez JA, Vazquez M (2002) Modelling of the hydrolysis of sorghum straw at atmospheric pressure. J Sci Food Agri 82:505–512CrossRefGoogle Scholar
  171. Tenkanen M (2004) Enzymatic tailoring of hemicelluloses. Hemicellul Sci Technol 864:292–311CrossRefGoogle Scholar
  172. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018PubMedCrossRefGoogle Scholar
  173. Timell TE (1965) Wood hemicelluloses. Adv Carbohydr Chem Biochem 20:409–483CrossRefGoogle Scholar
  174. Torget R, Hsu TA (1994) Two temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process. Appl Biochem Biotechnol 45–46:5–22CrossRefGoogle Scholar
  175. Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28–29:75–86CrossRefGoogle Scholar
  176. Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39:2817–2825CrossRefGoogle Scholar
  177. van Walsum GP, Shi H (2004) Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour Technol 93:217–226PubMedCrossRefGoogle Scholar
  178. van Walsum GP, Allen SG, Spencer MJ, Laser MS, Antal MJ, Lynd LR (1996) Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Appl Biochem Biotechnol 57–8:157–170CrossRefGoogle Scholar
  179. van Zyl C, Prior BA, du Preez JC (1988) Production of ethanol from sugar cane bagasse hemicellulose hydrolysate by Pichia stipitis. Appl Biochem Biotechnol 17:357–370CrossRefGoogle Scholar
  180. Vázquez D, Lage MA, Parajó JC, Alonso JL (1992a) Empirical assessment on the cellulase digestibility of processed Eucalyptus wood. Appl Biochem Biotechnol 37:123–139CrossRefGoogle Scholar
  181. Vázquez D, Lage MA, Parajó JC, Vázquez G (1992b) Fractionation of Eucalyptus wood in acetic acid media. Bioresour Technol 40:131–136CrossRefGoogle Scholar
  182. Vázquez MJ, Alonso JL, Domínguez H, Parajó JC (2001) Production of xylose-containing fermentation media by enzymatic post-hydrolysis of oligomers produced by corn cob autohydrolysis. World J Microbiol Biotechnol 17:817–822CrossRefGoogle Scholar
  183. Vázquez MJ, Alonso JL, Domínguez H, Parajó JC (2002) Enzymatic processing of crude, xylooligomer solutions obtained by autohydrolysis of Eucalyptus wood. Food Biotechnol 16:91–105CrossRefGoogle Scholar
  184. Vegas R, Alonso JL, Domínguez H, Parajó JC (2008a) Enzymatic processing of rice husk autohydrolysis products for obtaining low molecular weight oligosaccharides. Food Biotechnol 22:31–46CrossRefGoogle Scholar
  185. Vegas R, Kabel M, Schols HA, Alonso JL, Parajó JC (2008b) Hydrothermal processing of rice husks: effects of severity on product distribution. J Chem Technol Biotechnol 83:965–972CrossRefGoogle Scholar
  186. Walch E, Zemann AJ, Schinner F, Bonn G, Bobleter O (1992) Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar-cane bagasse and beech bark. Bioresour Technol 39:173–177CrossRefGoogle Scholar
  187. Wende G, Fry SC (1997) O-feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans. Phytochem 44:1011–1018CrossRefGoogle Scholar
  188. Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487PubMedCrossRefGoogle Scholar
  189. Woodward J (1984) Xylanases: functions, properties and applications. Ellis Horwood Ltd, ChichesterGoogle Scholar
  190. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032PubMedCrossRefGoogle Scholar
  191. Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113:3181–3188CrossRefGoogle Scholar
  192. Zahedifar M (1996) Novel uses of lignin and hemicellulosic sugars from acid-hydrolysis lignocellulosic materials. Dissertation, University of Aberdeeen, AberdeeenGoogle Scholar
  193. Zakrzewska ME, Bogel-Lukasik E, Bogel-Łukasik R (2010) Solubility of carbohydrates in ionic liquids. Energ Fuel 24:737–745CrossRefGoogle Scholar
  194. Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I (2011) High pressure processes in biorefineries. Chem Ing Tech 83:1016–1025CrossRefGoogle Scholar
  195. Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072PubMedCrossRefGoogle Scholar
  196. Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander R, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223PubMedCrossRefGoogle Scholar
  197. Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827PubMedCrossRefGoogle Scholar
  198. Zhao J, Zhang HM, Zheng RP, Lin ZX, Huang H (2011) The enhancement of pretreatment and enzymatic hydrolysis of corn stover by FeSO(4) pretreatment. Biochem Eng J 56:158–164CrossRefGoogle Scholar
  199. Zheng YZ, Lin HM, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francisco M. Gírio
    • 1
    Email author
  • Florbela Carvalheiro
    • 1
  • Luís C. Duarte
    • 1
  • Rafał Bogel-Łukasik
    • 1
  1. 1.Laboratório Nacional de Energia e Geologia, I.P.Unidade de BioenergiaLisbonPortugal

Personalised recommendations