Anatomy and Clinical Examination of the Eye

  • Thomas H. Williamson


During early development, the invaginated optic vesicle (optic cup) contains the primary vitreous, a vascularised tissue supplying the lens and retina (both of which have an ectodermal origin). During the third month of gestation, the primary vitreous gradually loses its vascularity and is replaced by the secondary vitreous derived mainly from the anterior retina and ciliary body. The principal remnants of the primary vitreous are Cloquet’s canal and some epipapillary gliosis. A mild exaggeration of the latter is seen in Bergmeister’s papilla (fibrous tuft) on the optic nerve head, whilst a Mittendorf’s dot is a primary vitreous remnant on the posterior capsule of the lens. The hyaloid artery may occasionally persist as a vascular channel growing into the central gel from the optic disc or as a glial plaque on the posterior lens capsule (see Chap. 13).


Optical Coherence Tomography Retinal Pigment Epithelium Retinal Detachment Macular Hole Retinal Nerve Fibre Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aizawa S, Mitamura Y, Baba T, Hagiwara A, Ogata K, Yamamoto S (2009) Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye (Lond) 23(2):304–308. doi: 10.1038/sj.eye.6703076, pii: 6703076CrossRefGoogle Scholar
  2. Baba T, Yamamoto S, Arai M, Arai E, Sugawara T, Mitamura Y, Mizunoya S (2008) Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina 28(3):453–458. doi: 10.1097/IAE.0b013e3181571398, pii: 00006982-200803000-00009PubMedCrossRefGoogle Scholar
  3. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ (2004) Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci 45(4):1041–1046PubMedCrossRefGoogle Scholar
  4. Bourquin S, Seitz P, Salathe RP (2001) Optical coherence topography based on a two-dimensional smart detector array. Opt Lett 26(8):512–514, pii: 63959PubMedCrossRefGoogle Scholar
  5. Chan A, Duker JS, Ishikawa H, Ko TH, Schuman JS, Fujimoto JG (2006) Quantification of photoreceptor layer thickness in normal eyes using optical coherence tomography. Retina 26(6):655–660. doi: 10.1097/01.iae.0000236468.33325.74, pii: 00006982-200607000-00011PubMedCrossRefGoogle Scholar
  6. Chauhan DS, Marshall J (1999) The interpretation of optical coherence tomography images of the retina. Invest Ophthalmol Vis Sci 40(10):2332–2342PubMedGoogle Scholar
  7. Domalpally A, Danis RP, Zhang B, Myers D, Kruse CN (2009) Quality issues in interpretation of optical coherence tomograms in macular diseases. Retina 29(6):775–781. doi: 10.1097/IAE.0b013e3181a0848b PubMedCrossRefGoogle Scholar
  8. Garvin M, Abramoff M, Wu X, Russell S, Burns T, Sonka M (2009) Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans Med Imaging. doi: 10.1109/TMI.2009.2016958
  9. Ghazi NG, Dibernardo C, Ying HS, Mori K, Gehlbach PL (2006) Optical coherence tomography of enucleated human eye specimens with histological correlation: origin of the outer “red line”. Am J Ophthalmol 141(4):719–726. doi: 10.1016/j.ajo.2005.10.019, pii: S0002-9394(05)01106-2PubMedCrossRefGoogle Scholar
  10. Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W (2003) Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 44(4):1696–1703PubMedCrossRefGoogle Scholar
  11. Haeker M, Abramoff M, Kardon R, Sonka M (2006) Segmentation of the surfaces of the retinal layer from OCT images. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9(Pt 1):800–807Google Scholar
  12. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113(3):325–332PubMedCrossRefGoogle Scholar
  13. Hoang QV, Linsenmeier RA, Chung CK, Curcio CA (2002) Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci 19(4):395–407PubMedCrossRefGoogle Scholar
  14. Holekamp NM, Shui YB, Beebe DC (2005) Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol 139(2):302–310. doi: 10.1016/j.ajo.2004.09.046, pii: S0002-9394(04)01147-XPubMedCrossRefGoogle Scholar
  15. Holekamp NM, Shui YB, Beebe D (2006) Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol 141(6):1027–1032PubMedCrossRefGoogle Scholar
  16. Hood DC, Raza AS, Kay KY, Sandler SF, Xin D, Ritch R, Liebmann JM (2009) A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT). Opt Express 17(5):3997–4003, pii: 176995PubMedCrossRefGoogle Scholar
  17. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254(5035):1178–1181PubMedCrossRefGoogle Scholar
  18. Inoue M, Watanabe Y, Arakawa A, Sato S, Kobayashi S, Kadonosono K (2009) Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol 247(3):325–330. doi: 10.1007/s00417-008-0999-9 PubMedCrossRefGoogle Scholar
  19. Ishikawa H, Gurses-Ozden R, Hoh ST, Dou HL, Liebmann JM, Ritch R (2000) Grayscale and proportion-corrected optical coherence tomography images. Ophthalmic Surg Lasers 31(3):223–228PubMedGoogle Scholar
  20. Itakura H, Kishi S, Kotajima N, Murakami M (2005) Vitreous collagen metabolism before and after vitrectomy. Graefes Arch Clin Exp Ophthalmol 243(10):994–998. doi: 10.1007/s00417-005-1150-9 PubMedCrossRefGoogle Scholar
  21. Murakami T, Tsujikawa A, Ohta M, Miyamoto K, Kita M, Watanabe D, Takagi H, Yoshimura N (2007) Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol 143(1):171–173. doi: 10.1016/j.ajo.2006.08.030, pii: S0002-9394(06)01014-2PubMedCrossRefGoogle Scholar
  22. Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, Miyamoto K, Kita M, Yoshimura N (2008) Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol 145(2):273–280. doi: 10.1016/j.ajo.2007.09.019, pii: S0002-9394(07)00829-XPubMedCrossRefGoogle Scholar
  23. Piccolino FC, de la Longrais RR, Ravera G, Eandi CM, Ventre L, Abdollahi A, Manea M (2005) The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 139(1):87–99. doi: 10.1016/j.ajo.2004.08.037, pii: S0002-9394(04)01006-2PubMedCrossRefGoogle Scholar
  24. Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG (2008) Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express 16(19):15149–15169, pii: 171960PubMedCrossRefGoogle Scholar
  25. Repetto R, Siggers JH, Stocchino A (2010) Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol 9(1):65–76. doi: 10.1007/s10237-009-0159-0 PubMedCrossRefGoogle Scholar
  26. Rosen RB, Hathaway M, Rogers J, Pedro J, Garcia P, Laissue P, Dobre GM, Podoleanu AG (2009) Multidimensional en-face OCT imaging of the retina. Opt Express 17(5):4112–4133, pii: 177004PubMedCrossRefGoogle Scholar
  27. Sacchet D, Moreau J, Georges P, Dubois A (2008) Simultaneous dual-band ultra-high resolution full-field optical coherence tomography. Opt Express 16(24):19434–19446, pii: 174457PubMedCrossRefGoogle Scholar
  28. Sadda SR, Joeres S, Wu Z, Updike P, Romano P, Collins AT, Walsh AC (2007) Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading. Invest Ophthalmol Vis Sci 48(2):839–848. doi: 10.1167/iovs.06-0554, pii: 48/2/839PubMedCrossRefGoogle Scholar
  29. Sano M, Shimoda Y, Hashimoto H, Kishi S (2009) Restored photoreceptor outer segment and visual recovery after macular hole closure. Am J Ophthalmol 147(2):313–318 e311. doi: 10.1016/j.ajo.2008.08.002, pii: S0002-9394(08)00618-1PubMedCrossRefGoogle Scholar
  30. Sayanagi K, Sharma S, Yamamoto T, Kaiser PK (2009) Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Ophthalmology 116(5):947–955. doi: 10.1016/j.ophtha.2008.11.002, pii: S0161-6420(08)01143-3PubMedCrossRefGoogle Scholar
  31. Schepens CL (1947) A new ophthalmoscope demonstration. Trans Am Ophthalmol Soc 51:298–304Google Scholar
  32. Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, Malone PE, Mangers SJ, Hou JH, Siegfried CJ, Beebe DC (2009) The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol 127(4):475–482. doi: 10.1001/archophthalmol.2008.621, pii: 127/4/475PubMedCrossRefGoogle Scholar
  33. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG (2006) High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113(11):2054 e2051–2014. doi: 10.1016/j.ophtha.2006.05.046, pii: S0161-6420(06)00731-7CrossRefGoogle Scholar
  34. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG (2008) Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 49(11):5103–5110. doi: 10.1167/iovs.08-2127, pii: iovs.08-2127PubMedCrossRefGoogle Scholar
  35. Stefansson E (2006) Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol 51(4):364–380. doi: 10.1016/j.survophthal.2006.04.005, pii: S0039-6257(06)00078-6PubMedCrossRefGoogle Scholar
  36. Stefansson E, Landers MB III, Wolbarsht ML (1982) Vitrectomy, lensectomy, and ocular oxygenation. Retina 2(3):159–166PubMedCrossRefGoogle Scholar
  37. Tao YK, Kennedy KM, Izatt JA (2009) Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. Opt Express 17(5):4177–4188, pii: 177008PubMedCrossRefGoogle Scholar
  38. Tappeiner C, Barthelmes D, Abegg MH, Wolf S, Fleischhauer JC (2008) Impact of optic media opacities and image compression on quantitative analysis of optical coherence tomography. Invest Ophthalmol Vis Sci 49(4):1609–1614. doi: 10.1167/iovs.07-1264, pii: 49/4/1609PubMedCrossRefGoogle Scholar
  39. Wakabayashi T, Oshima Y, Fujimoto H, Murakami Y, Sakaguchi H, Kusaka S, Tano Y (2009) Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology 116(3):519–528. doi: 10.1016/j.ophtha.2008.10.001, pii: S0161-6420(08)01021-XPubMedCrossRefGoogle Scholar
  40. Wang RK, An L (2009) Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt Express 17(11):8926–8940, pii: 179889PubMedCrossRefGoogle Scholar
  41. Williamson TH, Harris A (1994) Ocular blood flow measurement. Br J Ophthalmol 78(12):939–945PubMedCrossRefGoogle Scholar
  42. Winter M, Eberhardt W, Scholz C, Reichenbach A (2000) Failure of potassium siphoning by Muller cells: a new hypothesis of perfluorocarbon liquid-induced retinopathy. Invest Ophthalmol Vis Sci 41(1):256–261PubMedGoogle Scholar
  43. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50(7):3432–3437. doi: 10.1167/iovs.08-2970, pii: iovs.08-2970PubMedCrossRefGoogle Scholar
  44. Wong AD, Cooperberg PL, Ross WH, Araki DN (1991) Differentiation of detached retina and vitreous membrane with color flow Doppler. Radiology 178(2):429–431PubMedGoogle Scholar
  45. Wu Z, Vazeen M, Varma R, Chopra V, Walsh AC, LaBree LD, Sadda SR (2007) Factors associated with variability in retinal nerve fiber layer thickness measurements obtained by optical coherence tomography. Ophthalmology 114(8):1505–1512. doi: 10.1016/j.ophtha.2006.10.061, pii: S0161-6420(06)01600-9PubMedCrossRefGoogle Scholar
  46. Wu Z, Huang J, Dustin L, Sadda SR (2009) Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma 18(3):213–216. doi: 10.1097/IJG.0b013e31817eee20, pii: 00061198-200903000-00010PubMedCrossRefGoogle Scholar
  47. Xu J, Heys JJ, Barocas VH, Randolph TW (2000) Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res 17(6):664–669PubMedCrossRefGoogle Scholar
  48. Yasuno Y, Miura M, Kawana K, Makita S, Sato M, Okamoto F, Yamanari M, Iwasaki T, Yatagai T, Oshika T (2009) Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 50(1):405–413. doi: 10.1167/iovs.08-2272, pii: iovs.08-2272PubMedCrossRefGoogle Scholar
  49. Youm DJ, Kim JM, Park KH, Choi CY (2009) The effect of soft contact lenses during the measurement of retinal nerve fiber layer thickness using optical coherence tomography. Curr Eye Res 34(1):78–83. doi: 10.1080/02713680802579188, pii: 908191255PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas H. Williamson
    • 1
  1. 1.Department of OphthalmologySt. Thomas’ HospitalLondonUK

Personalised recommendations