Advertisement

Online Protocol Verification in Wireless Sensor Networks via Non-intrusive Behavior Profiling

  • Yangfan Zhou
  • Xinyu Chen
  • Michael R. Lyu
  • Jiangchuan Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7405)

Abstract

Wireless communication protocols are centric to Wireless Sensor Network (WSN) applications. However, WSN protocols are prune to defects, even after their field deployments. A convenient tool that can facilitate the detection of post-deployment protocol defects is of great importance to WSN practitioners. This paper presents Probe-I (sensor network Protocol behavior Inspector), a novel tool to obtain, visualize, and verify the behaviors of WSN protocols after their field deployments. Probe-I collects the protocol behaviors in a non-intrusive manner, i.e., via passively listening to the packet exchanges in the target network. Then with a role-oriented behavior modeling approach, Probe-I models the protocol behaviors node by node based on the sniffed packets, which well reflects how the target protocol performs in each node. This allows the WSN practitioners to readily see if the target protocol behaves as intended by simply verifying the correctness of the behavior metrics in a simple, baseline test. Finally, the verified metrics allow Probe-I to automatically check the protocol behaviors from time to time during the network lifetime. The suggested behavior discrepancy can unveil potential protocol defects. We apply Probe-I to verify two WSN data collection protocols, and find their design defects. It shows that Probe-I can substantially facilitate WSN protocol verification.

Keywords

Sensor Network Sensor Node Mobile Device Wireless Sensor Network Relay Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: The hitchhiker’s guide to successful wireless sensor network deployments. In: Proc. of ACM SenSys (2008)Google Scholar
  2. 2.
    Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield in a volcano monitoring sensor network. In: Proc. of OSDI (2006)Google Scholar
  3. 3.
    Luo, L., He, T., Zhou, G., Gu, L., Abdelzaher, T.F., Stankovic, J.A.: Achieving repeatability of asynchronous events in wireless sensor networks with EnviroLog. In: Proc. of the IEEE INFOCOM (2006)Google Scholar
  4. 4.
    Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., Luo, L.: Declarative tracepoints: A programmable and application independent debugging system for wireless sensor networks. In: Proc. of ACM SenSys (2008)Google Scholar
  5. 5.
    Google Inc.: Android operating system, http://www.android.com
  6. 6.
    TinyOS Community Forum: TinyOS: An open-source OS for the networked sensor regime, http://www.tinyos.net
  7. 7.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In: Proc. of the ACM SENSYS, pp. 1–14 (November 2009)Google Scholar
  8. 8.
    Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley (1996)Google Scholar
  9. 9.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In: Proc. of ACM SenSys (2009)Google Scholar
  10. 10.
    Chipara, O., Lu, C., Bailey, T.C., Roman, G.C.: Reliable clinical monitoring using wireless sensor networks: Experiences in a step-down hospital unit. In: Proc. of ACM SenSys (2010)Google Scholar
  11. 11.
    Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation of entire tinyos applications. In: Proc. of the ACM SenSys (2003)Google Scholar
  12. 12.
    Titzer, B., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with precise timing. In: Proc. of the IEEE IPSN, pp. 477–482 (May 2005)Google Scholar
  13. 13.
    Li, P., Regehr, J.: T-Check: Bug finding for sensor networks. In: Proc. of IPSN (2010)Google Scholar
  14. 14.
    Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weisez, C., Kowalewskiz, S., Wehrle, K.: KleeNet: Discovering insidious interaction bugs in wireless sensor networks before deployment. In: Proc. of the ACM/IEEE IPSN (2010)Google Scholar
  15. 15.
    Zhou, Y., Chen, X., Lyu, M., Liu, J.: Sentomist: Unveiling transient sensor network bugs via symptom mining. In: Proc. of the IEEE ICDCS (2010)Google Scholar
  16. 16.
    Stojmenovic, I.: Simulations in wireless sensor and ad hoc networks: matching and advancing models, metrics, and solutions. IEEE Comm. 46(12), 102–107 (2008)CrossRefGoogle Scholar
  17. 17.
    Khan, M.M.H., Luo, L., Huang, C., Abdelzaher, T.: SNTS: Sensor network troubleshooting suite. In: Proc. of the IEEE DCOSS (2007)Google Scholar
  18. 18.
    Liu, K., Li, M., Liu, Y., Li, M., Guo, Z., Hong, F.: Passive diagnosis for wireless sensor networks. In: Proc. of the ACM SENSYS (2008)Google Scholar
  19. 19.
    Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympathy for the sensor network debugger. In: Proc. of the ACM SENSYS (2005)Google Scholar
  20. 20.
    Rmer, K., Ma, J.: PDA: Passive distributed assertions for sensor networks. In: Proc. of IPSN (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yangfan Zhou
    • 1
    • 2
  • Xinyu Chen
    • 1
  • Michael R. Lyu
    • 1
    • 2
  • Jiangchuan Liu
    • 3
  1. 1.Shenzhen Research InstituteThe Chinese U. of Hong KongShenzhenChina
  2. 2.Dept. of Comp. Sci. and & Eng.The Chinese U. of Hong KongShatinHong Kong
  3. 3.School of Computing Sci.Simon Fraser U.BurnabyCanada

Personalised recommendations