Human Tracking for Daily Life Surveillance Based on a Wireless Sensor Network

  • Sen Zhang
  • Wendong Xiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7405)


This paper proposes a human motion tracking approach for daily life surveillance in a distributed wireless sensor network using ultrasonic range sensors.Because the human target often moves with high non linearity, the proposed approach applies the unscented Kalman filter (UKF) technique. Experimental results in a real human motion tracking system show that the proposed approach can perform better tracking accuracy compared to the most recent human motion tracking scheme in the real test-bed implementation.


Sensor Node Wireless Sensor Network Unscented Kalman Filter Ultrasonic Sensor Serial Port 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J.: Interacting Multiple Model Methods in Target Tracking: A Survey. IIEEE Trans. on Aerospace and Electronic Systems 34(1), 103–123 (1998)CrossRefGoogle Scholar
  2. 2.
    Lu, D., Yao, Y., He, F.: Sensor management based on cross-entropy in interacting multiple model Kalman filter. In: Proceedings of the 2004 American Control Conference, Boston, USA, July 2004, pp. 5381–5386 (2004)Google Scholar
  3. 3.
    Mallick, M., La Scala, B.F.: IMM Estimator for Ground Target Tracking with Variable Measurement Sampling Intervals. In: Proceedings of the 9th International Conference on Information Fusion(ICIF 2006), Florence, Italy, pp. 1–8 (July 2006)Google Scholar
  4. 4.
    Cai, Q., Aggarwal, J.K.: Tracking human motion in structured environments using a distributed-camera system. IIEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1241–1247 (1999)CrossRefGoogle Scholar
  5. 5.
    Hao, Q., Brandy, D.J., Guenther, B.D., Burchett, J.B., Shankar, M., Feller, S.: Human Tracking with Wireless Distributed Pyroelectric Sensors. IIEEE Sensors Journal 6(6), 1683–1696 (2006)CrossRefGoogle Scholar
  6. 6.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 34(3), 334–352 (2004)CrossRefGoogle Scholar
  7. 7.
    Mittal, A., Davis, L.S.: M2Tracker: A Multi-view Approach to Segmenting and Tracking People in a Cluttered Scene Using Region-Based Stereo. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 18–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Zajdel, W., Cemgil, A.T., Kröse, B.J.A.: Dynamic Bayesian Networks for Visual Surveillance with Distributed Cameras. In: Havinga, P., Lijding, M., Meratnia, N., Wegdam, M. (eds.) EuroSSC 2006. LNCS, vol. 4272, pp. 240–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. John Wiley and Sons, INC. (2001)Google Scholar
  10. 10.
    Xiong, K., Zhang, H., Chan, C.: Performance evaluation of UKF-based nonlinear filtering. Automatica 42(2), 261–270 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Zhang, S., Xiao, W., Ang Jr., M.H., Tham, C.K.: IMM Filter based Sensor Scheduling for Maneuvering Target Tracking in Wireless Sensor Networks. In: Proceedings of the Third International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2007), Melbourne, December 3-6, pp. 751–756 (2007)Google Scholar
  12. 12.
    Toh, Y., Xiao, W., Xie, L.: A Wireless Sensor Network Target Tracking System with Distributed Competition based Sensor Scheduling. In: Proceedings of the Third International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2007), Melbourne, December 3-6, pp. 257–262 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sen Zhang
    • 1
  • Wendong Xiao
    • 1
  1. 1.School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations