On Wireless Network Infrastructure Optimization for Cyber-Physical Systems in Future Smart Buildings

  • Jia Liu
  • Tianyou Kou
  • Qian Chen
  • Hanif D. Sherali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7405)


Today, most cyber-physical systems (CPS) in smart buildings require a wireless-based network infrastructure for sensing, communication, and actuation. In such CPSs, the energy expenditure and hence battery lifetime of the wireless network infrastructure depend heavily upon the placement of the base stations (BS). However, in indoor environments, BS placement is particularly challenging due to the impact of building structures and floors/walls separations. In this paper, we study the problem of jointly optimizing BS placement and power control in buildings to prolong the battery lifetime of sensors in the CPS network infrastructure. We first show that the joint BS placement and power control problem can be formulated as a mixed-integer non-convex program (MINCP), which is NP-hard and difficult to solve especially when the network size is large. To address this difficulty, we propose a novel efficient algorithm called ECPC that targets at large-sized network infrastructures in buildings. Our theoretical analysis and numerical results show that ECPC achieves competitive solutions compared to the true optimal solutions obtained by the branch-and-bound method.


Path Loss Channel Assignment Network Infrastructure Battery Lifetime Building Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hurley, S.: Planing effective cellular mobile radio networks. IEEE Trans. Veh. Technol. 51(2), 243–253 (2002)CrossRefGoogle Scholar
  2. 2.
    Mathar, R., Niessen, T.: Optimum positioning of base stations for cellular radio networks. Wireless Networks 6, 421–428 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hou, Y.T., Shi, Y., Sherali, H.D., Midkiff, S.F.: On energy provisioning and relay node placement for wireless sensor networks. IEEE Trans. Wireless Commun. 4(5), 2579–2590 (2005)CrossRefGoogle Scholar
  4. 4.
    Efrat, A., Har-Peled, S., Mitchell, J.: Approximation algorithms for two optimal location problems in sensor networks. In: Proc. IEEE Conference on Broadband Networks (BroadNets), Boston, MA, October 3-7, pp. 767–776 (2005)Google Scholar
  5. 5.
    Shi, Y., Hou, Y.T.: Optimal base station placement in wireless sensor networks. ACM Transactions on Sensor Networks 5(4) (November 2009)Google Scholar
  6. 6.
    Lu, J.-L., Jaffrès-Runser, K., Gorce, J.-M., Valois, F.: Indoor wLAN planning with a QoS constraint based on a Markovian performance evaluation model. In: Proc. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, Montreal, QC, June 19-21, pp. 152–158 (2006)Google Scholar
  7. 7.
    Jaffrès-Runser, K., Gorce, J.-M., Ubéda, S.: Multiobjective QoS-oriented planning for indoor wireless LAN. In: Proc. IEEE VTC Fall, Montreal, QC, September 25-28, pp. 1–5 (2006)Google Scholar
  8. 8.
    Sherali, H., Pendyala, C., Rappaport, T.: Optimal location of transmitters for micro-cellular radio communication system design. IEEE J. Sel. Areas Commun. 14(4), 662–673 (1996)CrossRefGoogle Scholar
  9. 9.
    Wong, J., Mason, A., Neve, M., Sowerby, K.: Base station placement in indoor wireless systems using binary integer programming. IEE Proceedings – Communications 153(5), 771–778 (2006)CrossRefGoogle Scholar
  10. 10.
    Adickes, M.D., Billo, R.E., Norman, B.A., Banerjee, S., Nnaji, B.O., Rajgopal, J.: Optimization of indoor wireless communication network layout. IIE Transactions 34(9), 823–836 (2002)Google Scholar
  11. 11.
    Bahri, A., Chamberland, S.: On the wireless local area network design problem with performance guarantees. Computer Networks 48, 856–866 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, Y., Kim, K., Choi, Y.: Optimization of AP placement and channel assignment in wireless LANs. In: Proc. IEEE Local Computer Networks (LCN), Tampa, FL, November 6-8, pp. 831–836 (2002)Google Scholar
  13. 13.
    Bejerano, Y., Han, S.-J., Li, L.E.: Fairness and load balancing in wireless LAN using association control. In: Proc. ACM MobiCom, Philadelphia, PA, September 26–October 1, pp. 2326–2330 (2004)Google Scholar
  14. 14.
    Kobayashi, M., Haruyama, S., Kohno, R., Nakagawa, M.: Optimal access point placement in simultaneous broadcast system using OFDM for indoor wireless LAN. In: Proc. IEEE PIMRC, London, UK, September 18-21, pp. 200–204 (2000)Google Scholar
  15. 15.
    Jiang, T., Zhu, G.: Uniform design simulated annealing for optimal access point placement of high data rate indoor wireless LAN using OFDM. In: Proc. IEEE PIMRC, Beijing, China, September 7-10, pp. 2302–2306 (2003)Google Scholar
  16. 16.
    Ling, X., Yeung, K.L.: Joint access point placement and channel assignment for 802.11 wireless LAN. IEEE Trans. Wireless Commun. 5(10), 2705–2711 (2006)CrossRefGoogle Scholar
  17. 17.
    So, A., Liang, B.: Efficient wireless extension point placement algorithm in urban rectilineal WLANs. IEEE Trans. Veh. Technol. 57(1), 532–547 (2008)CrossRefGoogle Scholar
  18. 18.
    Butterworth, K., Sowerby, K., Williamson, A.: Base station placement for in-building mobile communication systems to yield high capacity and efficiency. IEEE Trans. Commun. 48(4), 658–669 (2000)CrossRefGoogle Scholar
  19. 19.
    Stamatelos, D., Ephremides, A.: Spectral efficiency and optimal base placement for indoor wireless networks. IEEE J. Sel. Areas Commun. 14(4), 651–661 (1996)CrossRefGoogle Scholar
  20. 20.
    Liu, J., Kou, T., Chen, Q., Sherali, H.D.: Femtocell base station deployment in commercial buildings: A global optimization approach. IEEE J. Sel. Areas Commun. 30(3), 652–663 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, J., Chen, Q., Sherali, H.D.: Algorithm design for femtocell base station placement in commercial building environments. In: Proc. IEEE INFOCOM, Orlando, FL, March 25-30, pp. 3233–3237 (2012)Google Scholar
  22. 22.
    Rappaport, T.S.: Wireless Communications: Principles and Practice. Prentice Hall, Upper Saddle River (2002)Google Scholar
  23. 23.
    Nemmhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization, 2nd edn. Wiley-Interscience Publication, New York (1999)Google Scholar
  24. 24.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2000)CrossRefGoogle Scholar
  25. 25.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  26. 26.
    Liu, J., Chen, Q., Kou, T., Sherali, H.D.: On wireless network infrastructure optimization for cyber-physical systems in future smart buildings. Technical Report, Dept. of ECE, Ohio State University (July 2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jia Liu
    • 1
  • Tianyou Kou
    • 1
  • Qian Chen
    • 2
  • Hanif D. Sherali
    • 3
  1. 1.Dept. of ECEThe Ohio State UniversityColumbusUSA
  2. 2.Dept. of FABEThe Ohio State UniversityColumbusUSA
  3. 3.Dept. of ISEVirginia TechBlacksburgUSA

Personalised recommendations