Advertisement

Group Multicast Capacity in Large Scale Wireless Networks

  • Xican Yang
  • Jinbei Zhang
  • Jian Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7405)

Abstract

In this paper, we investigate the impact of group multicast on the capacity of large-scale random wireless networks. n nodes are randomly distributed in the networks, among which n s nodes are selected as sources and n d destined nodes are chosen for each. Specifically, we consider two different scenarios, i.e., (1) regular distribution scenario, and (2) random distribution scenario. The upper bound capacity of group multicast is derived for the network. Furthermore, we propose the corresponding capacity-achieving communication schemes to achieve the upper bound. Moreover, our study is the first attempt to understand how group multicast may impact on large scale network capacity from a theoretical perspective.

Keywords

Wireless Network Source Node Destination Node Network Capacity Group Multicast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Trans. on Inform. Theory 46(2), 388–404 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad-hoc wireless networks. IEEE/ACM Trans. on Networking 10, 477–486 (2002)CrossRefGoogle Scholar
  3. 3.
    Lin, X., Sharma, G., Mazumdar, R.R., Shroff, N.B.: Degenerate delay-capacity tradeoffs in ad-hoc networks with Brownian mobility. IEEE Trans. on Inform. Theory 52(6), 277–2784 (2006)MathSciNetGoogle Scholar
  4. 4.
    Neely, M., Modiano, E.: Capacity and Delay Tradeoffs for Ad-Hoc Mobile Networks. IEEE Trans. on Inform. Theory 51(6), 1917–1937 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lin, X., Shroff, N.B.: The Fundamental Capacity-Delay Tradeoff in Large Mobile Ad Hoc Networks. In: Proc. Third Annu. Mediterranean Ad Hoc Netw. Workshop (2004)Google Scholar
  6. 6.
    Ying, L., Yang, S., Srikant, R.: Optimal delay-throughput trade-offs in mobile ad-hoc networks. IEEE Trans. on Inform. Theory 9(54), 4119–4143 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, P., Fang, Y., Li, J., Huang, X.: Smooth Trade-offs Between Throughput and Delay in Mobile Ad Hoc Networks. IEEE Trans. on Mobile Computing 11(3), 427–438 (2012)CrossRefGoogle Scholar
  8. 8.
    Kozat, U., Tassiulas, L.: Throughput Capacity of Random Ad Hoc Networks with Infrastructure Support. In: Proc. ACM Mobicom, San Diego, CA, USA (June 2003)Google Scholar
  9. 9.
    Liu, B., Liu, Z., Towsley, D.: On the Capacity of Hybrid Wireless Networks. In: Proc. IEEE INFOCOM, San Francisco, CA, USA (March 2003)Google Scholar
  10. 10.
    Huang, W., Wang, X., Zhang, Q.: Capacity Scaling in Mobile Wireless Ad Hoc Network with Infrastructure Support. In: Proc. of IEEE ICDCS 2010, Genoa, Italy (2010)Google Scholar
  11. 11.
    Jing, T., Chen, X., Huo, Y., Cheng, X.: Achievable Transmission Capacity of Cognitive Mesh Networks With Different Media Access Control. In: Proc. IEEE INFOCOM, Orlando, Florida USA, March 25-30 (2012)Google Scholar
  12. 12.
    Fu, L., Qin, Y., Wang, X., Liu, X.: Throughput and Delay Analysis for Convergecast with MIMO in Wireless Networks. IEEE Trans. on Parallel and Distributed Systems 23(4), 768–775 (2012)CrossRefGoogle Scholar
  13. 13.
    Li, X.-Y.: Multicast Capacity of Wireless Ad Hoc Networks. IEEE/ACM Trans. on Networking 17(3), 950–961 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Sadjadpour, H.R., Garcia-Luna-Aceves, J.J.: A unifying perspective on the capacity of wireless ad hoc networks. In: Proc. IEEE INFOCOM, pp. 211-215 (2008)Google Scholar
  15. 15.
    Mao, X., Li, X.-Y., Tang, S.: Multicast capacity for hybrid wireless networks. In: Proc. ACM Mobihoc, New York, NY, USA, pp. 189-198 (2008)Google Scholar
  16. 16.
    Li, P., Zhang, C., Fang, Y.: The Capacity of Wireless Ad Hoc Networks Using Directional Antennas. IEEE Trans. on Mobile Computing 10(10), 1374–1387 (2011)CrossRefGoogle Scholar
  17. 17.
    Wang, X., Huang, W., Wang, S., Zhang, J., Hu, C.: Delay and Capacity Tradeoff Analysis for MotionCast. IEEE/ACM Trans. on Networking 19(5), 1354–1367 (2011)CrossRefGoogle Scholar
  18. 18.
    Le, Y., Ma, L., Cheng, W., Cheng, X., Chen, B.: Maximizing Throughput When Achieving Time Fairness in Multi-Rate Wireless LANs. In: Proc. IEEE INFOCOM Mini-Conference, Orlando, Florida USA, March 25-30 (2012)Google Scholar
  19. 19.
    Grossglauser, M., Tse, D.: Mobility increases the capacity of ad-hoc wireless networks. In: Proc. INFOCOM 2001, vol. 3, pp. 1360-1369 (2001)Google Scholar
  20. 20.
    Liu, J., Goeckel, D., Towsley, D.: Bounds on the Gain of Network Coding and Broadcasting in Wireless Networks. In: Proc. INFOCOM 2007, pp. 724-732 (May 2007)Google Scholar
  21. 21.
    Franceschetti, M., Dousse, O., Tse, D., Thiran, P.: Closing the Gap in the Capacity of Wireless Networks Via Percolation Theory. IEEE Trans. on Inform. Theory 53(3), 1009–1018 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kim, K., Cai, Y., Tavanapong, W.: A priority forwarding technique for efficient and fast flooding in wireless ad hoc networks. In: Proc. ICCCN 2005, pp. 223–228 (October 2005)Google Scholar
  23. 23.
    Vasudevan, S., Goeckel, D., Towsley, D.F.: Security-capacity tradeoff in large wireless networks using keyless secrecy. In: Proc. ACM Mobihoc 2010, New York, USA, pp. 21–30 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xican Yang
    • 1
    • 2
  • Jinbei Zhang
    • 1
  • Jian Li
    • 1
  1. 1.Department of Electronic EngineeringShanghai Jiao Tong UniversityChina
  2. 2.The State Key Laboratory of Integrated Services NetworksXidian UniversityChina

Personalised recommendations