Advertisement

Maximizing Network Topology Lifetime Using Mobile Node Rotation

  • Fatme El-Moukaddem
  • Eric Torng
  • Guoliang Xing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7405)

Abstract

One of the key challenges facing wireless sensor networks (WSNs) is extending network lifetime due to sensor nodes having limited power supplies. Extending WSN lifetime is complicated because nodes often experience differential power consumption. For example, nodes closer to the sink in a given routing topology transmit more data and thus consume power more rapidly than nodes farther from the sink. Inspired by the huddling behavior of emperor penguins where the penguins take turns on the cold extremities of a penguin “huddle”, we propose mobile node rotation, a new method for using low-cost mobile sensor nodes to address differential power consumption and extend WSN lifetime. Specifically, we propose to rotate the nodes through the high power consumption locations. We propose efficient algorithms for single and multiple rounds of rotations. Our extensive simulations show that mobile node rotation can extend WSN topology lifetime by more than eight times on average in a which is significantly better than existing alternatives.

Keywords

Sensor Node Wireless Sensor Network Mobile Node Network Lifetime Mobile Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: SenSys, pp. 214–226 (2004)Google Scholar
  2. 2.
    Suzuki, M., Saruwatari, S., Kurata, N., Morikawa, H.: A high-density earthquake monitoring system using wireless sensor networks. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, ser. SenSys 2007, pp. 373–374 (2007)Google Scholar
  3. 3.
    Filipponi, L., Santini, S., Vitaletti, A.: Data Collection in Wireless Sensor Networks for Noise Pollution Monitoring. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 492–497. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Luo, L., Cao, Q., Huang, C., Abdelzaher, T.F., Stankovic, J.A., Ward, M.: Enviromic: Towards cooperative storage and retrieval in audio sensor networks. In: ICDCS, p. 34 (2007)Google Scholar
  5. 5.
    Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing 6(4), 395–410 (2007)CrossRefGoogle Scholar
  6. 6.
    Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.S.: Robomote: enabling mobility in sensor networks. In: IPSN, pp. 404–409 (2005)Google Scholar
  7. 7.
  8. 8.
    Kim, J.-H., Kim, D.-H., Kim, Y.-J., Seow, K.-T.: Soccer Robotics. Springer (2004)Google Scholar
  9. 9.
    Zitterbart, D., Wienecke, B., Butler, J., Fabry, B.: Coordinated movements prevent jamming in an emperor penguin huddle. PLoS one 6(6), e20260 (2011)Google Scholar
  10. 10.
    Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L., Yu, Y., Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Networked infomechanical systems: a mobile embedded networked sensor platform. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN, pp. 376–381 (April 2005)Google Scholar
  11. 11.
    Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: INFOCOM, pp. 1735–1746 (2005)Google Scholar
  12. 12.
    Gu, Y., Bozdag, D., Ekici, E.: Mobile element based differentiated message delivery in wireless sensor networks. In: WoWMoM, pp. 83–92 (2006)Google Scholar
  13. 13.
    Kansal, A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8), 958–973 (2006)CrossRefGoogle Scholar
  14. 14.
    Xing, G., Wang, T., Xie, Z., Jia, W.: Rendezvous planning in mobility-assisted wireless sensor networks. In: RTSS 2007: Proceedings of the 28th IEEE International Real-Time Systems Symposium, pp. 311–320 (2007)Google Scholar
  15. 15.
    Jea, D., Somasundara, A., Srivastava, M.B.: Multiple Controlled Mobile Elements (Data Mules) for Data Collection in Sensor Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for energy efficient data collection in wireless sensor networks. MONET 11(3), 327–339 (2006)Google Scholar
  17. 17.
    Ooi, C.-C., Schindelhauer, C.: Minimal energy path planning for wireless robots. In: ROBOCOMM, p. 2 (2007)Google Scholar
  18. 18.
    Goldenberg, D.K., Lin, J., Morse, A.S.: Towards mobility as a network control primitive. In: MobiHoc, pp. 163–174 (2004)Google Scholar
  19. 19.
    Tang, C., McKinley, P.K.: Energy optimization under informed mobility. IEEE Trans. Parallel Distrib. Syst. 17(9), 947–962 (2006)CrossRefGoogle Scholar
  20. 20.
    El-Moukaddem, F., Torng, E., Xing, G., Kulkarni, S.: Mobile relay configuration in data-intensive wireless sensor networks. In: IEEE MASS, pp. 80–89 (2009)Google Scholar
  21. 21.
    El-Moukaddem, F., Torng, E., Xing, G.: Maximizing data gathering capacity of wireless sensor networks using mobile relays. In: IEEE MASS, pp. 312–321 (2010)Google Scholar
  22. 22.
    Burkard, R.E.: Selected topics on assignment problems. Discrete Applied Mathematics, 257–302 (2002)Google Scholar
  23. 23.
    Sha, M., Xing, G., Zhou, G., Liu, S., Wang, X.: C-mac: Model-driven concurrent medium access control for wireless sensor networks. In: INFOCOM, pp. 1845–1853 (2009)Google Scholar
  24. 24.
    Handy, M., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In: International Workshop on Mobile and Wireless Communications Network, pp. 368–372 (2002)Google Scholar
  25. 25.
    Liu, Y., Luo, Z., Xu, K., Chen, L.: A reliable clustering algorithm base on leach protocol in wireless mobile sensor networks. In: International Conference on Mechanical and Electrical Technology (ICMET), pp. 692–696 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fatme El-Moukaddem
    • 1
  • Eric Torng
    • 1
  • Guoliang Xing
    • 1
  1. 1.Department of Computer Science and EngineeringMichigan State UniversityEast LansingU.S.A.

Personalised recommendations