Advertisement

In Learning Nouns and Adjectives Remembering Matters: A Cortical Model

  • Alessio Plebe
  • Vivian M. De la Cruz
  • Marco Mazzone
Chapter
Part of the Theory and Applications of Natural Language Processing book series (NLP)

Abstract

The approach used and discussed here is one that simulates early lexical acquisition from a neural point of view. We use a hierarchy of artificial cortical maps that builds and develops models of artificial learners that are subsequently trained to recognize objects, their names, and then the adjectives pertaining to their color. Results of the model can explain what has emerged in a series of developmental research studies in early language acquisition, and can account for the different developmental patterns followed by children in acquiring nouns and adjectives, by perceptually driven associational learning processes at the synaptic level.

Keywords

Receptive Field Auditory Pathway Word Learning Color Processing Lexical Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aboitiz, F., Garcia, R. R., Bosman, C., & Brunetti, E. (2006). Cortical memory mechanisms and language origins. Brain and Language, 98, 40–56.CrossRefGoogle Scholar
  2. 2.
    Anzai, A., Peng, X., & Essen, D. C. V. (2007). Neurons in monkey visual area V2 encode combinations of orientations. Nature Neuroscience, 10, 1313–1321.CrossRefGoogle Scholar
  3. 3.
    Ashby, F. G., & Spiering, B. J. (2004). The neurobiology of category learning. Behavioral and Cognitive Neuroscience Reviews, 3, 101–113.CrossRefGoogle Scholar
  4. 4.
    Asr, F. T., Fazly, A., & Azimifar, Z. (2012). From cues to categories: A computational study of children’s early word categorization (this volume), 81–104.Google Scholar
  5. 5.
    Atzori, M., Lei, S., Evans, D. I. P., Kanold, P. O., Phillips-Tansey, E., McIntyre, O., & McBain, C. J. (2001). Differential synaptic processing separates stationary from transient inputs to the auditory cortex. Neural Networks, 4, 1230–1237.Google Scholar
  6. 6.
    Baddeley, A. (1992). Working memory. Science, 255, 556–559.CrossRefGoogle Scholar
  7. 7.
    Bates, E., Dal, P. S., & Thal, D. (1995). Individual differences and their implications for theories of language development. In P. Fletcher, & B. M. Whinney (Eds.), Handbook of child language (pp. 96–151). Oxford, UK: Basil Blackwell.Google Scholar
  8. 8.
    Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Cognitive Brain Research, 403, 309–312.Google Scholar
  9. 9.
    Belin, P., Fecteau, S., & Bédard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8, 129–135.CrossRefGoogle Scholar
  10. 10.
    Black, A. W., & Taylor, P. A. (1997). The festival speech synthesis system: System documentation (Tech. Rep. HCRC/TR-83). Human Communciation Research Centre, University of Edinburgh, Edinburgh, UK.Google Scholar
  11. 11.
    Blasdel, G. G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12, 3139–3161.Google Scholar
  12. 12.
    Bloom, P. (2000). How children learn the meanings of words. Cambridge, MA: MIT Press.Google Scholar
  13. 13.
    Booth, A. E., & Waxman, S. R. (2002). Word learning is smart: Evidence that conceptual information affects preschoolers’ extension of novel words. Cognition, 84, B11–B22.CrossRefGoogle Scholar
  14. 14.
    Booth, A. E., & Waxman, S. R. (2008). Taking stock as theories of word learning take shape. Developmental Science, 11(2), 185–194.CrossRefGoogle Scholar
  15. 15.
    Bornstein, M. H., & Cote, L. R. (2004). Cross-linguistic analysis of vocabulary in young children: Spanish, Dutch, French, Hebrew, Italian, Korean, and American English. Child Development, 75, 1115–1139.CrossRefGoogle Scholar
  16. 16.
    Brown, M. C. (2003). Audition. In L. R. Squire, F. Bloom, S. McConnell, J. Roberts, N. Spitzer, & M. Zigmond (Eds.), Fundamental neuroscience (pp. 699–726). New York: Academic.Google Scholar
  17. 17.
    Carey, S. (1978). The child as word learner. In M. Halle, J. Bresnan, & G. Miller (Eds.), Linguistic theory and psychological reality (pp. 264–293). Cambridge, MA: MIT Press.Google Scholar
  18. 18.
    Carey, S. (2009). The origin of concepts. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  19. 19.
    Clark, E. V. (1973). What’s in a word: On the child’s acquisition of semantics in his first language. In T. E. Moore (Ed.), Cognitive development and the acquisition of language. New York: Academic.Google Scholar
  20. 20.
    Dannemiller, J. L. (1989). A test of color constancy in 9- and 20-weeks-old human infants following simulated illuminant changes. Developmental Psychology, 25, 171–184.CrossRefGoogle Scholar
  21. 21.
    Darwin, C. (1877). A biographical sketch of a young infant. Kosmos, 1, 367–376.Google Scholar
  22. 22.
    Dowling, J. E. (1987). The retina: An approachable part of the brain. Cambridge, UK: Cambridge University Press.Google Scholar
  23. 23.
    Fazly, A., Alishahi, A., & Stevenson, S. (2008). A probabilistic incremental model of word learning in the presence of referential uncertainty. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (CogSci2008) (pp. 703–708). Austin, TX: Cognitive Science Society.Google Scholar
  24. 24.
    Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. Journal of Neurophysiology, 88, 929–941.Google Scholar
  25. 25.
    Fuster, J. M. (2001). The prefrontal cortex–an update: Time is of the essence. Neuron, 30, 319–333.CrossRefGoogle Scholar
  26. 26.
    Gasser, M., & Smith, L. B. (1998). Learning nouns and adjectives: A connectionist account. Language and Cognitive Processes, 13, 269–306.CrossRefGoogle Scholar
  27. 27.
    Gentner, D. (1978). On relational meaning: The acquisition of verb meaning. Cognitive Development, 49, 988–998.Google Scholar
  28. 28.
    Gershkoff-Stowe, L., & Smith, L. B. (2004). Shape and the first hundred nouns. Child Development, 75, 1098–1114.CrossRefGoogle Scholar
  29. 29.
    Goldman-Rakic, P. S. (1995). Architecture of the prefrontal cortex and the central executive. Annals of New York Academy of Science, 769, 71–83.CrossRefGoogle Scholar
  30. 30.
    Grassman, S., Stracke, M., & Tomasello, M. (2009). Two year olds exclude novel objects as potential referents of novel words based on pragmatics. Cognition, 112, 488–493.CrossRefGoogle Scholar
  31. 31.
    Grill-Spector, K., Kushnir, T., Edelman, S., Avidan-Carmel, G., Itzchak, Y., & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24, 187–203.CrossRefGoogle Scholar
  32. 32.
    Hall, G., & Waxman, S. R. (Eds.). (2004). Weaving a lexicon. Cambridge, MA: MIT Press.Google Scholar
  33. 33.
    Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.CrossRefGoogle Scholar
  34. 34.
    Hirsh-Pasek, K., Golinkoff, R. M., Hennon, E. A., & Maguire, M. J. (2004). Hybrid theories at the frontier of developmental psychology: The emergentist coalition model of word learning as a case in point. In G. Hall, & S. R. Waxman (Eds.), Weaving a lexicon (pp. 173–204). Cambridge, MA: MIT Press.Google Scholar
  35. 35.
    Hollich, G., Golinkoff, R., & Hirsh-Pasek, K. (2007). Young children associate novel words with complex objects rather than salient parts. Developmental Psychology, 43, 1051–1061.CrossRefGoogle Scholar
  36. 36.
    Hollich, G., Hirsh-Pasek, K., & Golinkoff, R. (2000). Breaking the language barrier: An emergentist coalition model for the origins of word learning (Vol. 65). Oxford, UK: Basil Blackwell. Monographs of the Society for Research in Child Development.Google Scholar
  37. 37.
    Hubel, D. H., & Wiesel, T. N. (1959). Brain and visual perception: The story of a 25-year collaboration. Oxford, UK: Oxford University Press.Google Scholar
  38. 38.
    Hubel, D., & Wiesel, T. (1962). Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.Google Scholar
  39. 39.
    Huey, E. D., Krueger, F., & Grafman, J. (2006). Representations in the human prefrontal cortex. Current Directions in Psychological Science, 15, 167–171.CrossRefGoogle Scholar
  40. 40.
    Ito, M., & Komatsu, H. (2004). Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. Journal of Neuroscience, 24, 3313–3324.CrossRefGoogle Scholar
  41. 41.
    Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.CrossRefGoogle Scholar
  42. 42.
    Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology, 71, 856–867.Google Scholar
  43. 43.
    Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.CrossRefGoogle Scholar
  44. 44.
    Kourtzi, Z., Erb, M., Grodd, W., & Bülthoff, H. H. (2003). Representation of the perceived 3-d object shape in the human lateral occipital complex. Cerebral Cortex, 13, 911–920.CrossRefGoogle Scholar
  45. 45.
    Landau, B., Smith, L. B., & Jones, S. (1992). Syntactic context and the shape bias in children’s and adults’ lexical learning. Journal of Memory and Language, 31, 807–825.CrossRefGoogle Scholar
  46. 46.
    Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 1621–1631.CrossRefGoogle Scholar
  47. 47.
    Linden, J. F., & Schreiner, C. E. (2006). Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebral Cortex, 13, 83–89.CrossRefGoogle Scholar
  48. 48.
    Macnamara, J. (1982). Names for things: A study of human learning. Cambridge, MA: MIT Press.Google Scholar
  49. 49.
    Markman, E. M. (1990). Constraints children place on word meanings. Cognitive Science, 14, 57–77.CrossRefGoogle Scholar
  50. 50.
    Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.Google Scholar
  51. 51.
    Mayor, J., & Plunkett, K. (2010). A neurocomputational account of taxonomic responding and fast mapping in early word learning. Psychological Review, 117, 1–31.CrossRefGoogle Scholar
  52. 52.
    Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions: Biological Sciences, 357, 1123–1136.CrossRefGoogle Scholar
  53. 53.
    Miller, L. M., Escab, M. A., Read, H. L., & Schreiner, C. E. (2002). Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology, 87, 516–527.Google Scholar
  54. 54.
    Mintz, T. H., & Gleitman, L. R. (2002). Adjectives really do modify nouns: the incremental and restricted nature of early adjective acquisition. Cognition, 84, 267–293.CrossRefGoogle Scholar
  55. 55.
    Mountcastle, V. (1957). Modality and topographic properties of single neurons in cats somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.Google Scholar
  56. 56.
    Nayar, S., & Murase, H. (1995). Visual learning and recognition of 3-d object by appearence. International Journal of Computer Vision, 14, 5–24.CrossRefGoogle Scholar
  57. 57.
    Nazzi, T., & Bertoncini, J. (2003). Before and after the vocabulary spurt: Two modes of word acquisition? Developmental Science, 6, 136–142.CrossRefGoogle Scholar
  58. 58.
    Plebe, A. (2007). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.CrossRefGoogle Scholar
  59. 59.
    Plebe, A. (2008). The ventral visual path: Moving beyond V1 with computational models. In T. A. Portocello, & R. B. Velloti (Eds.), Visual cortex: New research (pp. 97–160). New York: Nova Science Publishers.Google Scholar
  60. 60.
    Plebe, A., & Domenella, R. G. (2006). Early development of visual recognition. BioSystems, 86, 63–74.CrossRefGoogle Scholar
  61. 61.
    Plebe, A., & Domenella, R. G. (2007). Object recognition by artificial cortical maps. Neural Networks, 20, 763–780.zbMATHCrossRefGoogle Scholar
  62. 62.
    Plebe, A., Mazzone, M., & De La Cruz, V. M. (2010). First words learning: A cortical model. Cognitive Computation, 2, 217–229.CrossRefGoogle Scholar
  63. 63.
    Pruden, S. M., Hirsh-Pasek, K., Golinkoff, R. M., & Hennon, E. A. (2006). The birth of words: Ten-month-olds learn words through perceptual salience. Child Development, 77, 266–280.CrossRefGoogle Scholar
  64. 64.
    Quine, W. V. O. (1960). Word and object. New York: Columbia University Press.zbMATHGoogle Scholar
  65. 65.
    Robinson, C. W., & Sloutsky, V. M. (2007). Linguistic labels and categorization in infancy: Do labels facilitate or hinder? Infancy, 11, 232–253.CrossRefGoogle Scholar
  66. 66.
    Rogers, T. T., & McClelland, J. L. (2006). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.Google Scholar
  67. 67.
    Roy, D., & Pentland, A. (2002). Learning words from sights and sounds: A computational model. Cognitive Science, 26, 113–146.CrossRefGoogle Scholar
  68. 68.
    Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  69. 69.
    Samuelson, L. (2002). Statistical regularities in vocabulary guide language acquisition in connectionist models and 15-20-month-olds. Developmental Psychology, 38, 1016–1037.CrossRefGoogle Scholar
  70. 70.
    Sandhofer, C. M., & Smith, L. B. (2001). Why children learn color and size words so differently: Evidence from adults’ learning of artificial terms. Journal of Experimental Psychology, 130, 600–620.CrossRefGoogle Scholar
  71. 71.
    Schiller, P. H. (1996). On the specificity of neurons and visual areas. Behavioural Brain Research, 76, 21–35.CrossRefGoogle Scholar
  72. 72.
    Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.CrossRefGoogle Scholar
  73. 73.
    Sloutsky, V. M., & Robinson, C. W. (2008). Flexible attentional learning in infancy. In V. M. Sloutsky, B. C. Love, & K. McRae (Eds.), Proceedings of the XXX Annual Conference of the Cognitive Science Society (pp. 1182–1187). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  74. 74.
    Smith, L. B. (1999). Children’s noun learning: How general learning processes make specialized learning mechanisms. In B. MacWhinney (Ed.), The emergence of language (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  75. 75.
    Swingley, D. (2010). Fast mapping and slow mapping in children’s word learning. Language Learning and Development, 6, 179–183.CrossRefGoogle Scholar
  76. 76.
    Thompson, I. (1997). Cortical development: A role for spontaneous activity? Current Biology, 7, 324–326.CrossRefGoogle Scholar
  77. 77.
    Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
  78. 78.
    Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  79. 79.
    Van Essen, D. C., & DeYoe, E. A. (1994). Concurrent processing in the primate visual cortex. In M. S. Gazzaniga (Ed.), The cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
  80. 80.
    Vanduffel, W., Tootell, R. B., Schoups, A. A., & Orban, G. A. (2002). The organization of orientation selectivity throughout the macaque visual cortex. Cerebral Cortex, 12, 647–662.CrossRefGoogle Scholar
  81. 81.
    Verkindt, C., Bertrand, O., Echallier, F., & Pernier, J. (1995). Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalography and Clinical Neurophisiology, 96, 143–156.CrossRefGoogle Scholar
  82. 82.
    Wandell, B. A. (1999). Computational neuroimaging of human visual cortex. Annual Review of Neuroscience, 10, 145–173.CrossRefGoogle Scholar
  83. 83.
    Wandell, B. A., Brewer, A. A., & Dougher, R. F. (2005). Visual field map clusters in human cortex. Philosophical Transactions of the Royal Society of London, 360, 693–707.CrossRefGoogle Scholar
  84. 84.
    Weigelt, S., Kourtzi, Z., Kohler, A., Singer, W., & Muckli, L. (2007). The cortical representation of objects rotating in depth. Journal of Neuroscience, 27, 3864–3874.CrossRefGoogle Scholar
  85. 85.
    Winer, J. A., Miller, L. M., Lee, C. C., & Schreiner, C. E. (2005). Auditory thalamocortical transformation: Structure and function. Neuron, 28, 255–263.Google Scholar
  86. 86.
    Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: Processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–147.CrossRefGoogle Scholar
  87. 87.
    Zeki, S. (1983). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelenghts and colours. Neuroscience, 9, 741–765.CrossRefGoogle Scholar
  88. 88.
    Zeki, S. (1983). Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience, 9, 767–781.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessio Plebe
    • 1
  • Vivian M. De la Cruz
    • 1
  • Marco Mazzone
    • 2
  1. 1.Department of Cognitive ScienceUniversity of MessinaMessinaItaly
  2. 2.Laboratory of Cognitive ScienceUniversity of CataniaCataniaItaly

Personalised recommendations