Advertisement

Thermodynamic Relations

  • Roman Teisseyre
  • Maria Teisseyre-Jeleńska
Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Introduction

Keeping in mind that the main elements of the classic thermodynamics remain valid when consdering the Asymmetric Strain Theory, we will focus here only on some necessary corrections related to the rotational components appearing due to the presented new approach to the motions and deformations. In our considerations, important influences on the thermodynamic parameters in solids have been exerted by defects; therefore, we follow the \( {\text{cB}}\Upomega \)

Keywords

Point Defect Screw Dislocation Dislocation Line Configuration Entropy Vacant Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dyre JC (2006) Colloquium: The glass transition and elastic models of glass-forming liquids Rev. Mod Phys 78:953–972CrossRefGoogle Scholar
  2. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Pergamon Press, New York, p 288Google Scholar
  3. Kuklińska M (1996) Thermodynamics of line defects: construction of a dislocation superlattice. Acta Geophys Polon 44:237–249Google Scholar
  4. Majewski E, Teisseyre R (1997) Earthquake thermodynamics. Tectonophysics 277(1–3):219–233CrossRefGoogle Scholar
  5. Majewski E, Teisseyre R (1998) Anticrack-associated faulting in deep subduction zones. Phys Chem Earth 23:1115–1122CrossRefGoogle Scholar
  6. Majewski E, Teisseyre R (2001) Anticrack-associated faulting and superplastic flow in deep subduction zones. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the Earth’s interior. (International Geophysics Series vol 76). Academic Press, San Diego, pp 379–39 Google Scholar
  7. Mataga P, Freund L, Hutchinson J (1987) Crack tip plasticity in dynamic fracture. J Phys Chem Solids 48:985–1005. doi: 10.1016/0022-3697(87)90115-6 CrossRefGoogle Scholar
  8. Roux S, Guyon E (1985) Mechanical percolation: a small beam lattice study. J Phys Lett (Paris) 46(21):999–1004CrossRefGoogle Scholar
  9. Su H, Welch DO, Winnie W-N (2004) Strain effects on point defects and chain-oxygen order-disorder transition in 123 cuprate compounds. Phys Rev B 70:054517CrossRefGoogle Scholar
  10. Teisseyre R (1969) Dislocational representation of thermal stresses. Acta Geophys Polon 16:3–12Google Scholar
  11. Teisseyre R (1970) Crack formation and energy release caused by the concentration of dislocations along fault planes. Tectonophysics 9(6):547–557CrossRefGoogle Scholar
  12. Teisseyre R (1990a) Earthquake rebound: energy release and defect density drop. Acta Geophys. Pol XXXVIII(1):15–20Google Scholar
  13. Teisseyre R (1990b) Earthquake Premonitory and Rebound Theory: Synthesis and revision of Principles. Acta Geophys. Pol XXXVIII(3):269–278Google Scholar
  14. Teisseyre R (1995) Deformation and geometry. In: Teisseyre R (ed) Theory of Earthquake Premonitory and Fracture Processes. PWN (Polish Scientific Publishers), Warszawa, pp 504–511Google Scholar
  15. Teisseyre R (1996) Shear band thermodynamical earthquake model. Acta Geophys Pol 44(3):219–236Google Scholar
  16. Teisseyre R (1997) Shear band thermodynamical model of fracturing with a compressional component. In: Gibowicz S, Lasocki S (eds) Rockburst and seismicity in mines. A.A.Balkema, Rotterdam, Brookfield, pp 17–21Google Scholar
  17. Teisseyre R (2001) Shear band thermodynamic model of fracturing. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the Earth’s interior. Academic Press, San Diego, pp 279–292CrossRefGoogle Scholar
  18. Teisseyre R (2008a) Introduction to asymmetric continuum: dislocations in solids and extreme phenomena in fluids. Acta Geophys Pol 56(2):259–269CrossRefGoogle Scholar
  19. Teisseyre R (2008b) Asymmetric continuum: standard theory. In: Teisseyre R, Nagahama H, Majewski E (eds) Physics of asymmetric continuum: extreme and fracture processes: earthquake rotation and soliton waves. Springer, Heidelberg, pp 95–109CrossRefGoogle Scholar
  20. Teisseyre R, Górski M (2009) Fundamental deformations in asymmetric continuum. Bull Seism Soc Am 99(2B):1132–1136. doi: 10.1785/0120080091 CrossRefGoogle Scholar
  21. Teisseyre R, Majewski E (1990) Thermodynamics of line defects and earthquake processes. Acta Geophys Pol 38:355–373Google Scholar
  22. Teisseyre R, Majewski E (1995a) Thermodynamics of line defects. In: Teisseyre R (ed) Theory of Earthquake Premonitory and Fracture Processes. PWN, Warsaw, pp 324–332Google Scholar
  23. Teisseyre R, Majewski E (1995b) Earthquake thermodynamics. In: Teisseyre R (ed) Theory of Earthquake Premonitory and Fracture Processes. PWN, Warsaw, pp 586–590Google Scholar
  24. Teisseyre R, Majewski E (2001a) Thermodynamics of line defects and earthquake thermodynamics. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the Earth’s interior. Academic Press, San Diego, pp 261–278CrossRefGoogle Scholar
  25. Teisseyre R, Majewski E (2001b) Physics of earthquakes. In: Lee WHK, Kanamori H, Jennings PC (eds) International Handbook of Earthquake and Engineering Seismology. Academic Press, San DiegoGoogle Scholar
  26. Teisseyre R, Białecki M, Górski M (2006a) Degenerated asymmetric continuum theory. In: Teisseyre R, Takeo M, Majewski E (eds) Physics of asymmetric continuum: extreme and fracture processes: earthquake rotation and soliton waves. Springer-Verlag, Berlin, Heidelberg, pp 43–55Google Scholar
  27. Teisseyre R, Górski M, Teisseyre KP (2006b) Fracture-band geometry and rotation energy release. In: R Teisseyre, M Takeo, E Majewski (eds) Physics of asymmetric continuum: extreme and fracture processes: earthquake rotation and soliton waves, Springer-Verlag, Berlin, Heidelberg, pp 169–183Google Scholar
  28. Teisseyre R, Górski M, Teisseyre KP (2008) Fracture processes: spin and twist-shear coincidence. In: Teisseyre R, Nagahama H, Majewski E (eds) Physics of asymmetric continuum: extreme and fracture processes: earthquake rotation and soliton waves. Springer-Verlag, Berlin, Heidelberg, pp 111–122CrossRefGoogle Scholar
  29. Teodosiu C (1970) A dynamic theory of dislocations and its applications to the theory of the elastic plastic continuum. In: Simmonds A (ed) Fundamental Aspects of Dislocation Theory, vol. 317(2), National Bureau of Standards Special Publication, pp 837–876 Google Scholar
  30. Varotsos P (1976) Comments on the formation entropy of a Frenkel defect in BaF2 and CaF2. Phys. Rev. B 13:938CrossRefGoogle Scholar
  31. Varotsos P (2007a) Self-diffusion in sodium under pressure revisited. J Phys: Condens Matter 19:176231CrossRefGoogle Scholar
  32. Varotsos P (2007b) Calculation of point defect parameters in diamond. Phys. Rev. B 75:172107CrossRefGoogle Scholar
  33. Varotsos P (2007c) Defect volumes and the equation of state in α-PbF2. Phys Rev B 76(4):092106CrossRefGoogle Scholar
  34. Varotsos P (2008) Point defect parameters in b-PbF2 revisited. Solid State Ionics 179:438–441CrossRefGoogle Scholar
  35. Varotsos P, Alexopoulos K (1977) Calculation of the formation entropy of vacancies due to anharmonic effects. Phys. Rev. B 15:4111–4114CrossRefGoogle Scholar
  36. Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 110:73–98CrossRefGoogle Scholar
  37. Varotsos P, Alexopoulos K (1984b) Physical properties of the variations of the electric field of the earth preceding earthquakes, II. Determination of epicenter and magnitude, Tectonophysics 110:99–125CrossRefGoogle Scholar
  38. Varotsos P, Alexopoulos K (1986) Thermodynamics of Point Defects and their relation with the bulk properties, North Holland, Amsterdam.Google Scholar
  39. Varotsos P, Lazaridou M (1991) Latest aspects of earthquake Prediction in Greece based on Seismic Electric Signals. I, Tectonophysics 188:321–347CrossRefGoogle Scholar
  40. Varotsos P, Ludwig W, Alexopoulos K (1978) Calculation of the formation volume of vacancies in solids. Phys. Rev. B 18:2683–2691CrossRefGoogle Scholar
  41. Varotsos P, Alexopoulos K, Lazaridou M (1993) Latest aspects of earthquake prediction in Greece based on Seismic Electric Signals II. Tectonophysics 224:1–37CrossRefGoogle Scholar
  42. Varotsos P, Sarlis N, Lazaridou M (1999) Interconnection of defect parameters and stress-induced electric signals in ionic crystals. Phys. Rev. B 59:24–27CrossRefGoogle Scholar
  43. Varotsos PA, Lazaridou M (2001) Thermodynamics of point defects. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the Earth’s interior. Academic Press, San Diego, pp 231–259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations