Exohedral Metallofullerenes

  • Oleksandr LobodaEmail author
Part of the Carbon Nanostructures book series (CARBON)


Fullerene-based materials have attracted considerable interest since the discovery of C60. A promising area of research concerns metal–fullerene interactions and their application to advanced nano materials, with potential use in optical and switching devices, as photoconductors, and for hydrogen storage. Moreover, transition metal complexes of fullerenes show catalytic activity in homogeneous hydrogenation of acetylenic alcohols [1] and hydroformylation of alkenes [2]. In heterogeneous catalysis, exohedral metallofullerenes are found to promote hydrogenation of olefins and acetylenes [3, 4] as well as reduction of carbon monoxide to methane [5, 6].


Metal Atom Bond Dissociation Energy Fullerene Molecule Bond Dissociation Energy Transition Metal Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sulman, E., Matveeva, V., Semagina, N., Yanov, I., Bashilov, V., Sokolov, V.: J. Mol. Catal. 146, 257 (1999)CrossRefGoogle Scholar
  2. 2.
    Claridge, J., Douthwaite, R., Green, M.: J. Mol. Catal. 89, 113 (1994)CrossRefGoogle Scholar
  3. 3.
    Nagashima, H., Nakaoka, A., Tajima, S., Saito, Y., Itoh, K.: Chem. Lett. 7, 1361 (1992)CrossRefGoogle Scholar
  4. 4.
    Nagashima, H., Kato, Y., Yamaguchi, H., Kimura, E., Kawanishi, T., Kato, M.: Saito, Y., Haga, M., Itoh, K. Chem. Lett. 7, 1207 (1994)CrossRefGoogle Scholar
  5. 5.
    Wohlers, M., Herzog, B., Belz, T., Bauer, A., Braun, T., Ruhle, T., Schlogl, R.: Synth. Met. 77, 55 (1996)CrossRefGoogle Scholar
  6. 6.
    Braun, T., Wohlers, M., Belz, T., Nowitzke, G., Wormann, G., Uchida, Y.: Pfander, N., Schlogl, R. Catal. Lett. 43, 167 (1997)CrossRefGoogle Scholar
  7. 7.
    Fagan, P., Calabrese, J., Malone, B.: Science 252, 1160 (1991)Google Scholar
  8. 8.
    Fagan, P., Calabrese, J., Malone, B.: Acc. Chem. Res. 25, 134 (1992)CrossRefGoogle Scholar
  9. 9.
    Bashilov, V., Petrovskii, P., Sokolov, V., Lindeman, S., Guzey, I., Struchkov, Y.: Organometallics 12, 991 (1993)CrossRefGoogle Scholar
  10. 10.
    Dresselhaus, M., Dresselhaus, G., Eklund, P.: Science of Fullerenes and Carbon Nanotubes. Academic press Inc., San Diego (1996)Google Scholar
  11. 11.
    Lerke, S.A., Evans, D.H., Fagan, P.J.: J. Am. Chem. Soc. 114, 7807 (1992)CrossRefGoogle Scholar
  12. 12.
    Fagan, P.J., Calabrese, J.C., Malone, B.: J. Am. Chem. Soc. 113, 9408 (1991)CrossRefGoogle Scholar
  13. 13.
    Talyzin, A.V., Jansson, U.: Thin Solid Films 429, 96 (2003)CrossRefGoogle Scholar
  14. 14.
    Fujimoto, H., Nakao, Y., Fukui, K.: J. Mol. Struct. 300, 425 (1993)CrossRefGoogle Scholar
  15. 15.
    Lichtenberger, D., Wright, L., Gruhn, N., Rempe, M.: J. Organomet. Chem. 478, 213 (1994)CrossRefGoogle Scholar
  16. 16.
    Andriotis, A., Menon, M.: Phys. Rev. 60, 4521 (1999)CrossRefGoogle Scholar
  17. 17.
    Alemany, M., Dieguez, O., Rey, C., Gallego, L.: J. Chem. Phys. 114, 9371 (2001)CrossRefGoogle Scholar
  18. 18.
    Handy, N., Cohen, A.: J. Mol. Phys. 99, 403 (2001)CrossRefGoogle Scholar
  19. 19.
    Dunning Jr, T.H.: J. Chem. Phys. 53, 2823 (1970)CrossRefGoogle Scholar
  20. 20.
    Dunning, T., Hay, P.: Methods of Electronic Structure Theory. In: Schaeffer, H. (ed.) Modern theoretical chemistry. Plenum Press, New York (1977)Google Scholar
  21. 21.
    Magnusson, E., Schaefer III, H.: J. Chem. Phys 83, 5721 (1985)CrossRefGoogle Scholar
  22. 22.
    Dolg, M., Wedig, U., Stoll, H., Preuss, H.: J. Chem. Phys. 86, 866 (1987)CrossRefGoogle Scholar
  23. 23.
    Andrae, D., Haeussermann, U., Dolg, M., Stoll, H.: Theor. Chim. Acta 77, 123 (1990)CrossRefGoogle Scholar
  24. 24.
    Becke, A.: J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  25. 25.
    Boys, S., Bernardi, F.: Mol. Phys. 19, 553 (1970)CrossRefGoogle Scholar
  26. 26.
    Koch, W., Holthausen, M.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2000)Google Scholar
  27. 27.
    Hay, P.: J. Chem. Phys. 66, 4377 (1977)CrossRefGoogle Scholar
  28. 28.
    Moore, C.: Atomic Energy Levels. NBS, Washington (1958)Google Scholar
  29. 29.
    Glendening, E., Reed, A., Carpenter, J., Weinhold, F.: NBO Version 3.1. (2001)Google Scholar
  30. 30.
    Dapprich, S., Frenking, G.: J. Phys. Chem. 99, 9352 (1995)CrossRefGoogle Scholar
  31. 31.
    Gorelsky, S.I.: AOMix: Program for Molecular Orbital Analysis. York University, Toronto (1997).
  32. 32.
    Gorelsky, S., Lever, A.: J. Organomet. Chem 635, 187 (2001)CrossRefGoogle Scholar
  33. 33.
    Hedberg, K., Hedberg, L., Bethune, D., Brown, C., Dorn, H., Johnson, R., de Vries, M.: Science 254, 410 (1991)CrossRefGoogle Scholar
  34. 34.
    Nunzi, F., Sgamellotti, A., Re, N., Floriani, C.: Organometallics 19, 1628 (2000)CrossRefGoogle Scholar
  35. 35.
    Kameno, Y., Ikeda, A., Nakao, Y., Sato, H., Sakaki, S.: J. Phys. Chem. 109, 8055 (2005)CrossRefGoogle Scholar
  36. 36.
    Campanera, J., Munoz, J., Vazquez, J., Bo, C., Poblet, J.: Inorg. Chem. 43, 6815 (2004)CrossRefGoogle Scholar
  37. 37.
    Li, J., Schreckenbach, G., Ziegler, T.: Inorg. Chem. 34, 3245 (1995)CrossRefGoogle Scholar
  38. 38.
    Hawkins, J., Meyer, A., Lewis, T., Loren, S., Hollander, F.: Science 252, 312 (1991)CrossRefGoogle Scholar
  39. 39.
    Fagan, P., Ward, M., Calabrese, J.: J. Am. Chem. Soc. 111, 1719 (1989)CrossRefGoogle Scholar
  40. 40.
    Haser, M., Almlof, J., Scuseria, G.: Chem. Phys. Lett. 181, 497 (1991)CrossRefGoogle Scholar
  41. 41.
    Morokuma, K., Borden, W.: J. Am. Chem. Soc. 113, 1912 (1991)CrossRefGoogle Scholar
  42. 42.
    Blomberg, M., Siegbahn, P., Svensson, M.: J. Phys. Chem. 96, 9794 (1992)CrossRefGoogle Scholar
  43. 43.
    Gates, B.: Catalytic Chemistry. Wiley, New York (1992)Google Scholar
  44. 44.
    Blomberg, M., Siegbahn, P., Nagashima, U., Wennerberg, J.: J. Am. Chem. Soc. 113, 424 (1991)CrossRefGoogle Scholar
  45. 45.
    Visscher, L., Dyall, K.: Atomic Data Nucl. Data Tables 67, 207 (1997)CrossRefGoogle Scholar
  46. 46.
    Weisshaar, J.: ACS Symp. Ser. 530, 208 (1993)CrossRefGoogle Scholar
  47. 47.
    Ritter, D., Weisshaar, J.: J. Am. Chem. Soc. 112, 6425 (1990)CrossRefGoogle Scholar
  48. 48.
    Widmark, P., Roos, B., Siegbahn, P.: J. Phys. Chem. 89, 2180 (1985)CrossRefGoogle Scholar
  49. 49.
    Siegbahn, P., Brandemark, U.: Theor. Chim. Acta 69, 119 (1986)CrossRefGoogle Scholar
  50. 50.
    Chatt, J., Duncanson, L.: J. Chem. Soc. 1953, 2939 (1953)CrossRefGoogle Scholar
  51. 51.
    Dewar, M.: Bull. Soc. Chim. Fr. p. 71(1951)Google Scholar
  52. 52.
    Massera, C., Frenking, G.: Organometallics 22, 2758 (2003)CrossRefGoogle Scholar
  53. 53.
    Cheng, P., Nyburg, S.: Can. J. Chem. 50, 912 (1972)CrossRefGoogle Scholar
  54. 54.
    Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)Google Scholar
  55. 55.
    Nagashima, H., Nakaoka, A., Saito, Y., Kato, M., Kawanishi, T., Itoh, K.: The first organometallic polymer of buckminsterfullerene. J. Chem. Soc. Chem. Commun. 69, 377–379 (1992)CrossRefGoogle Scholar
  56. 56.
    Nagashima, H., Kato, Y., Yamaguchi, H., Kimura, E., Kawanishi, T., Kato, M.: Haga, M., Itoh, K.: Synthesis and reactions of organoplatinum compounds of \(C_{60}, C_{60}Pt_n\). Chem. Lett. 7, 1207–1210 (1994) CrossRefGoogle Scholar
  57. 57.
    Ivanova, V.N.: Fullerene compounds with transition metals \({\rm M}_{n}{\rm C}_{60}\): preparation, structure, and properties. J. Struct. Chem. 41, 135–148 (2000)CrossRefGoogle Scholar
  58. 58.
    Wohlers, M., Herzog, B., Belz, T., Bauer, A., Braun, Th, Ruhle, Th, Schlogl, R.: Ruthenium-\({\rm C}_{60}\) compounds: Properties and catalytic potential. Synth. Met. 77, 55–58 (1996)CrossRefGoogle Scholar
  59. 59.
    Talyzin, A.V., Jansson, U.: A comparative Raman study of some transition metal fullerides. Thin Solid Films 429, 96–101 (2003)CrossRefGoogle Scholar
  60. 60.
    Alemany, M.M.G., Dieguez, O., Rey, C., Gallego, L.J.: A densityfunctional study of the structures and electronic properties of \(C_{59}\)Ni and \(C_{60}\)Ni clusters. J. Chem. Phys. 114, 9371–9374 (2001)CrossRefGoogle Scholar
  61. 61.
    Andriotis, A.N., Menon, M.: Geometry and bonding in small (\(C_{60})_nNi_m\) clusters. Phys. Rev. B 60, 4521–4524 (1999)CrossRefGoogle Scholar
  62. 62.
    Nagashima, H., Yamaguchi, H., Kato, Y., Saito, Y., Haga, M., Itoh, K.: Facile cleavage of carbon-palladium bonds in \(C_{60}Pd_n\) with phosphines and phosphites. An alternative route to (\(\eta ^{2}-C_{60})PdL_{2}\) and discovery of fluxionarity suggesting the rotation of \(C_{60}\) on the \(PdL_2\) species in solution. Chem. Lett. 12, 2153–2156 (1993)CrossRefGoogle Scholar
  63. 63.
    Nagashima, H., Nakaoka, A., Tajima, S., Saito, Y., Itoh, K.: Catalytic hydrogenation of olefins and acetylenes over \({\rm C}_{60}{\text{ Pd}}_n\). Chem. Lett. 377, 1361–1364 (1992)CrossRefGoogle Scholar
  64. 64.
    Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H.: Energyadjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990)CrossRefGoogle Scholar
  65. 65.
    Sparta, M., Jensen, V.R., Borve, K.J.: Structure and stability of substitutional metallofullerenes of the first-row transition metals. Fuller. Nanotub. Carb. Nanostruct. 14(2–3), 269–278 (2006)CrossRefGoogle Scholar
  66. 66.
    Hedberg, K., Hedberg, L., Bethunde, D.S., Brown, C.A., Dorn, H.C., Johnson, R.D., Devries, M.: Bond lengths in free molecules of buckminsterfullerene, \(C_{60}\), from gas-phase electron-diffraction. Science 254, 410–412 (1991)CrossRefGoogle Scholar
  67. 67.
    Chatt, J., Duncanson, L.A.: Olefin co-ordination compounds 3. Infrared spectra and structure-attempted preparation of acetylene complexes. J. Chem. Soc. 28, 2939–2947 (1953)CrossRefGoogle Scholar
  68. 68.
    Dewar, M.J.S.: A review of the \(\pi \)-complex theory. Bull. Soc. Chim. Fr. 18, C71–79 (1951)Google Scholar
  69. 69.
    Lin, S.S., Strauss, B., Kant, A.: Dissociation energy of \({\text{ Pd}}_2\). J. Chem. Phys. 51, 2282–2283 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Colloid and Water ChemistryKievUkraine

Personalised recommendations