Responses of Transposable Elements to Polyploidy

  • Christian Parisod
  • Natacha Senerchia
Part of the Topics in Current Genetics book series (TCG, volume 24)


Polyploidy (i.e., hybridization between more or less divergent genomes, associated with whole genome duplication) has been shown to result in drastic genome reorganization. Such changes involved major restructuring and epigenetic repatterning, mainly in transposable element (TE) fractions. Polyploidy thus is an adequate model to explore the mechanisms generating genome variation and their impact on evolution. In this chapter, we will review available evidence on the importance of TEs in the short-term and the long-term changes in polyploid genomes. We will argue that the study of polyploid systems not only offers the opportunity to highlight specific mechanisms controlling the activity of TEs but also the evolutionary impact of TE-induced genome reorganization.


Epigenetic changes Genome reorganization Genome shock Hybridization Restructuring si-RNA Speciation Whole genome doubling 



This work was funded by the National Centre of Competence in Research “Plant Survival” and a grant (PZ00P3-131950 to CP), both from the Swiss National Science Foundation.


  1. Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543PubMedCrossRefGoogle Scholar
  2. Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654PubMedCrossRefGoogle Scholar
  3. Ainouche ML, Fortune PM, Salmon A, Parisod C (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11:1159–1173CrossRefGoogle Scholar
  4. Alix K, Heslop Harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54:895–909PubMedCrossRefGoogle Scholar
  5. Alix K, Joets J, Ryder C, Moore J, Barker G (2008) The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J 56:1030–1044PubMedCrossRefGoogle Scholar
  6. Beaulieu J, Jean M, Belzile F (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281:421–435PubMedCrossRefGoogle Scholar
  7. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627PubMedCrossRefGoogle Scholar
  8. Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in Triticale. PLoS One 3:e1402PubMedCrossRefGoogle Scholar
  9. Blumenstiel J (2011) Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet 27:23–31PubMedCrossRefGoogle Scholar
  10. Bourc’his D, Voinnet O (2010) A Small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–622PubMedCrossRefGoogle Scholar
  11. Cantu D, Vanzetti L, Sumner A, Dubcovsky M, Matvienko M (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11:408PubMedCrossRefGoogle Scholar
  12. Chantret N, Salse J, Sabot F, Rahman S, Bellec A (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045PubMedCrossRefGoogle Scholar
  13. Charles M, Belcram H, Just J, Huneau C, Viollet A (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086PubMedCrossRefGoogle Scholar
  14. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406PubMedCrossRefGoogle Scholar
  15. Choulet F, Wicker T, Rustenholz C, Paux E, Salse J (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701PubMedCrossRefGoogle Scholar
  16. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399PubMedCrossRefGoogle Scholar
  17. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846PubMedCrossRefGoogle Scholar
  18. Comai L, Tyagi AP, Winter K, Holmes Davis R, Reynolds SH (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567PubMedGoogle Scholar
  19. Comai L, Madlung A, Josefsson C, Tyagu A (2003) Do the different parental ‘heteronomes’ cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci 358:1149–1155PubMedCrossRefGoogle Scholar
  20. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedCrossRefGoogle Scholar
  21. Doyle J, Flagel L, Paterson A, Rapp R, Soltis D (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461PubMedCrossRefGoogle Scholar
  22. Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51:616–627PubMedCrossRefGoogle Scholar
  23. Feldman M, Levy AA (2005) Allopolyploidy - a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258PubMedCrossRefGoogle Scholar
  24. Feldman M, Levy A (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36:511–518PubMedCrossRefGoogle Scholar
  25. Feldman M, Liu B, Segal G, Abbo S, Levy AA (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387PubMedGoogle Scholar
  26. Feng SH, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627PubMedCrossRefGoogle Scholar
  27. Garsmeur O, Charron C, Bocs S, Jouffe V, Samain S, Couloux A, Droc G, Zini C, Glaszmann JC, Van Sluys M-A, D’Hont A (2011) High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytol 189:629–642PubMedCrossRefGoogle Scholar
  28. Gaut BS, Ross-Ibarra J (2008) Selection on major components of angiosperm genomes. Science 320:484–486PubMedCrossRefGoogle Scholar
  29. Gowda MVC, Bhat RS, Sujay V, Kusuma P (2011) Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Syst Evol 291:153–158CrossRefGoogle Scholar
  30. Grover CE, Kim HR, Wing RA, Paterson AH, Wendel JF (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res 14:1474–1482PubMedCrossRefGoogle Scholar
  31. Grover C, Kim H, Wing R, Paterson A, Wendel J (2007) Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium). Plant J 50:995–1006PubMedCrossRefGoogle Scholar
  32. Grover C, Yu Y, Wing R, Paterson A, Wendel J (2008) A phylogenetic analysis of indel dynamics in the cotton genus. Mol Biol Evol 25:1415–1428PubMedCrossRefGoogle Scholar
  33. Ha M, Lu J, Tian L, Ramachandran V, Kasschau K (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840PubMedCrossRefGoogle Scholar
  34. Hazzouri R, Mohajer A, Dejak S, Otto S, Wright S (2008) Contrasting patterns of transposable-element insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid Arabidopsis species. Genetics 179:581–592PubMedCrossRefGoogle Scholar
  35. Hollister J, Smith L, Guo Y-L, Ott F, Weigel D (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327PubMedCrossRefGoogle Scholar
  36. Hu G, Hawkins J, Grover C, Wendel J (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53:599–607PubMedCrossRefGoogle Scholar
  37. Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang HY, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100PubMedCrossRefGoogle Scholar
  38. Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328PubMedCrossRefGoogle Scholar
  39. Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530PubMedCrossRefGoogle Scholar
  40. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985PubMedCrossRefGoogle Scholar
  41. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedGoogle Scholar
  42. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106PubMedCrossRefGoogle Scholar
  43. Kenan Eichler M, Leshkowitz D, Tal L, Noor E, Melamed Bessudo C (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188:263–279PubMedCrossRefGoogle Scholar
  44. Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186:801–812PubMedCrossRefGoogle Scholar
  45. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  46. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483PubMedCrossRefGoogle Scholar
  47. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York, NYGoogle Scholar
  48. Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593PubMedCrossRefGoogle Scholar
  49. Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613CrossRefGoogle Scholar
  50. Lim KY, Kovarik A, Matyasek R, Chase M, Clarkson J (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763PubMedCrossRefGoogle Scholar
  51. Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379PubMedCrossRefGoogle Scholar
  52. Lu F, Sanyal A, Zhang S, Song R (2009) Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci USA 106:2071–2076PubMedCrossRefGoogle Scholar
  53. Lynch M (2007) The origins of genome architecture. Sinauer Associates, SunderlandGoogle Scholar
  54. Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182CrossRefGoogle Scholar
  55. Madlung A, Tyagi AP, Watson B, Jiang HM, Kagochi T (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230PubMedCrossRefGoogle Scholar
  56. Martienssen RA (2010) Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytol 186:46–53PubMedCrossRefGoogle Scholar
  57. Matzke MA, Matzke AJM (1998) Polyploidy and transposons. Trends Ecol Evol 13:241–241PubMedCrossRefGoogle Scholar
  58. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  59. Mestiri I, Chague V, Tanguy A-M, Huneau C, Huteau V (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101PubMedCrossRefGoogle Scholar
  60. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117PubMedCrossRefGoogle Scholar
  61. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462PubMedCrossRefGoogle Scholar
  62. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747PubMedGoogle Scholar
  63. Parisod C (2012) Polyploids integrate genomic changes and ecological shifts. New Phytol 193:297–300PubMedCrossRefGoogle Scholar
  64. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien M-A, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015PubMedCrossRefGoogle Scholar
  65. Parisod C, Alix K, Just J, Petit M, Sarilar V (2010a) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45PubMedCrossRefGoogle Scholar
  66. Parisod C, Holderegger R, Brochmann C (2010b) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17PubMedCrossRefGoogle Scholar
  67. Parisod C, Mhiri C, Lim KY, Clarkson JJ, Chase MW, Leitch AR, Grandbastien M-A (2012) Differential dynamics of transposable elements during long-term diploidization of Nicotiana section Repandae (Solanaceae) allopolyploid genomes. PLoS ONE (in press)Google Scholar
  68. Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien M-A, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15PubMedCrossRefGoogle Scholar
  69. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien M-A, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147PubMedCrossRefGoogle Scholar
  70. Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688CrossRefGoogle Scholar
  71. Renny-Byfield S, Chester M, Kovarik A, LeComber AC, Grandbastien M-A, Deloger M, Nichols RA, Macas J, Novak P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2853PubMedCrossRefGoogle Scholar
  72. Riddle NC, Birchler JA (2003) Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet 19:597–600PubMedCrossRefGoogle Scholar
  73. Rieseberg LH (2001) Polyploid evolution: Keeping the peace at genomic reunions. Curr Biol 11:R925–R928PubMedCrossRefGoogle Scholar
  74. Salina EA, Sergeeva EM, Adonina IG, Shcherban AB, Belcram H, Huneau C, Chalhoub B (2011) The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats. BMC Plant Biol 11:99PubMedCrossRefGoogle Scholar
  75. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175PubMedCrossRefGoogle Scholar
  76. Sarilar V, Marmagne A, Brabant P, Joets J, Alix K (2011) BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol 77:59–75PubMedCrossRefGoogle Scholar
  77. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074PubMedCrossRefGoogle Scholar
  78. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759PubMedGoogle Scholar
  79. Sharma A, Schneider K, Presting G (2008) Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations. Proc Natl Acad Sci USA 105:15470–15474PubMedCrossRefGoogle Scholar
  80. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285PubMedCrossRefGoogle Scholar
  81. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352PubMedCrossRefGoogle Scholar
  82. Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723PubMedCrossRefGoogle Scholar
  83. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  84. Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752PubMedCrossRefGoogle Scholar
  85. Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M, Colot V (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604PubMedCrossRefGoogle Scholar
  86. Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478PubMedCrossRefGoogle Scholar
  87. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979PubMedCrossRefGoogle Scholar
  88. Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107PubMedCrossRefGoogle Scholar
  89. Walsh B (2003) Population-genetic models of the fates of duplicate genes. Genetica 118:279–294PubMedCrossRefGoogle Scholar
  90. Wang J, Tian L, Lee H-S, Chen ZJ (2006) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965–974PubMedCrossRefGoogle Scholar
  91. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694PubMedCrossRefGoogle Scholar
  92. Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249PubMedCrossRefGoogle Scholar
  93. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879PubMedCrossRefGoogle Scholar
  94. Yaakov B, Kashkush K (2011) Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid. Genome 54:42–49PubMedCrossRefGoogle Scholar
  95. Yu Q, Guyot R, de Kochko A, Byers A, Navajas Perez R (2011) Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Plant J 67:305–317PubMedCrossRefGoogle Scholar
  96. Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ (1998) Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8:479–492PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory of Evolutionary Botany, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations