Hitching a Ride: Nonautonomous Retrotransposons and Parasitism as a Lifestyle

Chapter
Part of the Topics in Current Genetics book series (TCG, volume 24)

Abstract

Large genomes in plants are composed primarily of long terminal repeat (LTR) retrotransposons, which replicate and propagate by a “copy-and-paste” mechanism dependent on enzymes encoded by the retrotransposons themselves. The enzymes direct a life cycle involving transcription, translation, packaging, reverse transcription, and integration. Loss of any coding capacity will render a retrotransposon incapable of completing its life cycle autonomously. Nevertheless, retrotransposons lacking complete open reading frames for one or more of their proteins are abundant in the genome. These nonautonomous retrotransposons can, however, be complemented in trans by proteins expressed by another retrotransposon, restoring mobility. It is sufficient for a nonautonomous LTR retrotransposon to retain the signals needed for recognition by the transcription machinery and the proteins of autonomous elements. The degree to which nonautonomous retrotransposons interfere with the propagation of autonomous elements has major evolutionary consequences for the genome, affecting the relative rate of gain versus loss of retrotransposons and thereby genome size.

Keywords

Retrotransposon Replication Integration Reverse transcription Genome dynamics 

Notes

Acknowledgment

Research on which this review is based was carried out under a grant from the Academy of Finland, Decision 123074.

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Autexier C, Lue NF (2006) The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75:493–517PubMedCrossRefGoogle Scholar
  3. Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 1:6PubMedCrossRefGoogle Scholar
  4. Cherepanov P, Maertens GN, Hare S (2011) Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 2:249–256CrossRefGoogle Scholar
  5. Deragon J, Zhang X (2006) Short interspersed elements (SINEs) in plants: origin classification and use as phylogenetic markers. Syst Biol 55:949–956PubMedCrossRefGoogle Scholar
  6. Dolan J, Chen A, Weber IT, Harrison RW, Leis J (2009) Defining the DNA substrate binding sites on HIV-1 integrase. J Mol Biol 385:568–579PubMedCrossRefGoogle Scholar
  7. Fedoroff NV (1999) The supressor-mutator element and the evolutionary riddle of transposons. Genes Cells 4:11–19PubMedCrossRefGoogle Scholar
  8. Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242PubMedCrossRefGoogle Scholar
  9. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332:231–234PubMedCrossRefGoogle Scholar
  10. Gladyshev EA, Arkhipova IR (2011) A widespread class of reverse transcriptase-related cellular genes. Proc Natl Acad Sci USA 108:20311–20316PubMedCrossRefGoogle Scholar
  11. Goodier JL, Kazazian HHJ (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–35PubMedCrossRefGoogle Scholar
  12. Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys MA, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241PubMedCrossRefGoogle Scholar
  13. Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27:775–784PubMedCrossRefGoogle Scholar
  14. Hartl DL, Lozovskaya ER, Lawrence JG (1992) Nonautonomous transposable elements in prokaryotes and eukaryotes. Genetica 86:47–53PubMedCrossRefGoogle Scholar
  15. Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA 106:17811–17816PubMedCrossRefGoogle Scholar
  16. Hickman AB, Chandler M, Dyda F (2010) Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45:50–69PubMedCrossRefGoogle Scholar
  17. Jones RN (2005) McClintock’s controlling elements: the full story. Cytogenet Genome Res 109:90–103PubMedCrossRefGoogle Scholar
  18. Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111:433–444PubMedCrossRefGoogle Scholar
  19. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCrossRefGoogle Scholar
  20. Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) LARD retroelements: novel non-autonomous components of barley and related genomes. Genetics 166:1437–1450PubMedCrossRefGoogle Scholar
  21. Kalendar R, Tanskanen JA, Chang W, Antonius K, Sela H, Peleg P, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838PubMedCrossRefGoogle Scholar
  22. Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529PubMedCrossRefGoogle Scholar
  23. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 32:102–106CrossRefGoogle Scholar
  24. Keith JH, Schaeper CA, Fraser TS, Fraser MJ Jr (2008) Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol Biol 9:73PubMedCrossRefGoogle Scholar
  25. Kim A, Terzian C, Santamaria P, Pélisson A, Prud’homme N, Bucheton A (1994) Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci USA 91:1285–1289PubMedCrossRefGoogle Scholar
  26. Kramerov D, Vassetzky N (2005) Short retroposons in eukaryotic genomes. Int Rev Cytol 247:165–221PubMedCrossRefGoogle Scholar
  27. Kroutter EN, Belancio VP, Wagstaff BJ, Roy-Engel AM (2009) The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition. PLoS Genet 5:e1000458PubMedCrossRefGoogle Scholar
  28. Laten HM, Havecker ER, Farmer LM, Voytas DF (2005) SIRE1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol Biol Evol 20:1222–1230CrossRefGoogle Scholar
  29. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567PubMedCrossRefGoogle Scholar
  30. Lu K, Heng X, Summers MF (2011) Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 410:609–633PubMedCrossRefGoogle Scholar
  31. Lue NF, Bosoy D, Moriarty TJ, Autexier C, Altman B, Leng S (2005) Telomerase can act as a template- and RNA-independent terminal transferase. Proc Natl Acad Sci USA 102:9778–9783PubMedCrossRefGoogle Scholar
  32. McClintock B (1948) Mutable loci in maize. Year B Carnegie Inst Wash 47:155–169Google Scholar
  33. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  34. Miyazaki Y, Miyake A, Nomaguchi M, Adachi A (2011) Structural dynamics of retroviral genome and the packaging. Front Microbiol 2:264PubMedGoogle Scholar
  35. Montaño SP, Rice PA (2011) Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol 21:370–378PubMedCrossRefGoogle Scholar
  36. Ohno S (1972) So much ‘junk’ in our genome. Brookhaven Symp Biol 23:366–370PubMedGoogle Scholar
  37. Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J (2004) Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2:461–472PubMedCrossRefGoogle Scholar
  38. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  39. Ramallo E, Kalendar R, Schulman AH, Martínez-Izquierdo JA (2008) Reme1: a Copia retrotransposon in melon is transcriptionally induced by UV light. Plant Mol Biol 66:137–150PubMedCrossRefGoogle Scholar
  40. Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388PubMedCrossRefGoogle Scholar
  41. Sabot F, Sourdille P, Chantret N, Bernard M (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128:439–447PubMedCrossRefGoogle Scholar
  42. Soleimani VD, Baum BR, Johnson DA (2006) Quantification of the retrotransposon BARE-1 reveals the dynamic nature of the barley genome. Genome 49:389–396PubMedCrossRefGoogle Scholar
  43. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Loren V, van Themaat E, Brown JK, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546PubMedCrossRefGoogle Scholar
  44. Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Life without GAG: The BARE-2 retrotransposon as a parasite's parasite. Gene 390:166–174PubMedCrossRefGoogle Scholar
  45. Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA in retroviruses. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 121–160Google Scholar
  46. Temin HM (1980) Origin of retroviruses from cellular moveable genetic elements. Cell 21:599–600PubMedCrossRefGoogle Scholar
  47. Vicient CM, Kalendar R, Anamthawat-Jonsson K, Schulman AH (1999a) Structure functionality and evolution of the BARE-1 retrotransposon of barley. Genetica 107:53–63PubMedCrossRefGoogle Scholar
  48. Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999b) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784PubMedGoogle Scholar
  49. Vicient CM, Kalendar R, Schulman AH (2001) Envelope-containing retrovirus-like elements are widespread transcribed and spliced and insertionally polymorphic in plants. Genome Res 11:2041–2049PubMedCrossRefGoogle Scholar
  50. Wessler SR (1996) Turned on by stress: plant retrotransposons. Curr Biol 6:959–961PubMedCrossRefGoogle Scholar
  51. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  52. Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722PubMedCrossRefGoogle Scholar
  53. Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Biotechnology and Food Research, MTT Agrifood ResearchJokioinenFinland

Personalised recommendations