Genome-Wide Analysis of Transposition Using Next Generation Sequencing Technologies

Chapter
Part of the Topics in Current Genetics book series (TCG, volume 24)

Abstract

Transposable elements (TEs) make a large part of most eukaryotic genomes and strongly impact their structure, function, and evolution. The identification of active TEs in a genome is, therefore, essential in order to fully understand its dynamics at both structural and functional levels. The recent advent of new sequencing technologies, often referred to as next generation sequencing (NGS) technologies, has opened new doors to study structural variations at full genome scale. Although restricted so far mostly to human studies, these new strategies have shown to be highly efficient and promising in few other model species, including the two plant species Arabidopsis thaliana and rice. This chapter describes the concepts and techniques of using NGS for the study of TE activity in eukaryotic genomes at large.

Keywords

Next Generation sequencing Paired-end mapping Structural variation Transposable elements Genomics 

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101–108PubMedCrossRefGoogle Scholar
  3. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537PubMedCrossRefGoogle Scholar
  4. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627PubMedCrossRefGoogle Scholar
  5. Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–622PubMedCrossRefGoogle Scholar
  6. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681PubMedCrossRefGoogle Scholar
  7. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97PubMedCrossRefGoogle Scholar
  8. Fiston-Lavier AS, Carrigan M, Petrov DA, González J (2011) T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Res 39:e36PubMedCrossRefGoogle Scholar
  9. Fiston-Lavier AS, Carrigan M, Petrov DA, Gonzalez J (2010) T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Res 39:e36PubMedCrossRefGoogle Scholar
  10. Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in de novo annotation approaches. PLoS One 6:e16586CrossRefGoogle Scholar
  11. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC (2009) Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res 19:1270–1278PubMedCrossRefGoogle Scholar
  12. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788PubMedCrossRefGoogle Scholar
  13. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951PubMedCrossRefGoogle Scholar
  14. International Rice Genome Sequencing Project (IRGSP) (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  15. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  16. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431(7008):569–573PubMedCrossRefGoogle Scholar
  17. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedCrossRefGoogle Scholar
  18. Kofler R, Betancourt AJ, Schlötterer C (2012) Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet 8(1):e1002487PubMedCrossRefGoogle Scholar
  19. Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944PubMedCrossRefGoogle Scholar
  20. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–426PubMedCrossRefGoogle Scholar
  21. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein MB (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol 10:R23PubMedCrossRefGoogle Scholar
  22. Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170PubMedCrossRefGoogle Scholar
  23. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220PubMedCrossRefGoogle Scholar
  24. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66PubMedCrossRefGoogle Scholar
  25. Lisch D, Bennetzen JL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14:156–161PubMedCrossRefGoogle Scholar
  26. McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599PubMedGoogle Scholar
  27. Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6:S13–S20PubMedCrossRefGoogle Scholar
  28. Messing J, Bennetzen JL (2008) Grass genome structure and evolution. Genome Dyn 4:41–56PubMedCrossRefGoogle Scholar
  29. Miclaus M, Wu Y, Xu JH, Dooner HK, Messing J (2011) The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics 189:1271–1280PubMedCrossRefGoogle Scholar
  30. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430PubMedCrossRefGoogle Scholar
  31. Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483PubMedCrossRefGoogle Scholar
  32. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  33. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435PubMedCrossRefGoogle Scholar
  34. Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765PubMedCrossRefGoogle Scholar
  35. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269PubMedCrossRefGoogle Scholar
  36. Qin FJ, Sun QW, Huang LM, Chen XS, Zhou DX (2010) Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression. Mol Plant 3:773–782PubMedCrossRefGoogle Scholar
  37. Qi J, Zhao F (2011) inGAP-sv: a novel scheme to identify and visualize structural variation from paired and mapping data. Nucleic Acids Res 39:W567–W575PubMedCrossRefGoogle Scholar
  38. Rigal M, Mathieu O (2011) A “mille-feuille” of silencing: epigenetic control of transposable elements. Biochim Biophys Acta 1809:452–458PubMedCrossRefGoogle Scholar
  39. Sabot F, Picault N, Elbaidouri M, Llauro C, Chaparro C, Piegu B, Roulin A, Guiderdoni E, Delabastide M, Mccombie R, Panaud O (2011) Transpositional landscape of rice genome revealed by Paired-End Mapping of high-throughput resequencing data. Plant J 66:241–246PubMedCrossRefGoogle Scholar
  40. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768PubMedCrossRefGoogle Scholar
  41. Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship with small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784PubMedCrossRefGoogle Scholar
  42. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77:78–88PubMedCrossRefGoogle Scholar
  43. Siol M, Wright SI, Barett SC (2010) The population genomics of plant adaptation. New Phytol 188:313–332PubMedCrossRefGoogle Scholar
  44. Slotkin RK, Martienssen RA (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285PubMedCrossRefGoogle Scholar
  45. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455PubMedCrossRefGoogle Scholar
  46. Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM, Urban AE, Grubert F, Lam HY, Lee WP, Busby M, Indap AR, Garrison E, Huff C, Xing J, Snyder MP, Jorde LB, Batzer MA, Korbel JO, Marth GT, 1000 Genomes Project (2011) A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 7:e1002236PubMedCrossRefGoogle Scholar
  47. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163PubMedCrossRefGoogle Scholar
  48. Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57PubMedCrossRefGoogle Scholar
  49. Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107PubMedCrossRefGoogle Scholar
  50. Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8:218PubMedCrossRefGoogle Scholar
  51. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  52. Wicker T, Buchmann JP, Keller B (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res 20:1229–1237PubMedCrossRefGoogle Scholar
  53. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoixne P, Nicolas A, Delattre O, Barillot E (2010) SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics 26:1895–1896PubMedCrossRefGoogle Scholar
  54. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38:95–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Génome et Développement des Plantes, UMR UPVD/CNRS 5096Université de Perpignan Via DomitiaPerpignan cedexFrance

Personalised recommendations