LTR Retrotransposons as Controlling Elements of Genome Response to Stress?

Chapter
Part of the Topics in Current Genetics book series (TCG, volume 24)

Abstract

Transposable elements can impact gene expression and regulatory patterns. This is particularly true for LTR retrotransposons, whose Long Terminal Repeats (LTRs) promoter/regulatory capsules are present at both ends of the element and make them particularly prone to influencing adjacent genes. LTRs can act as promoters, as sources of regulatory sequences, or initiate antisense transcripts regulating gene expression. As a consequence, LTR responses to specific stimuli can influence adjacent host genes and contribute to the organism’s response to these stimuli. Most plant LTR retrotransposons are activated in response to stress or environmental changes, and in this review, we will update current data on this stress response. After a short journey across the animal kingdom, where the regulatory impact of LTRs is well documented, we will present recent reports suggesting that LTRs may also play a role in the modulation of gene expression and in the generation of phenotypic plasticity in plants.

Keywords

Retrotransposon Retroviral LTR Long Terminal Repeat Stress Cotranscrit Expression Host gene 

Abbreviations

ERV

Endogenous Retroviral Element

LINE

Long INterspersed Nuclear Element

LTR

Long Terminal Repeat

SINE

Short INterspersed Nuclear Element

TE

Transposable Element

TSS

Transcription Start Site

Notes

Acknowledgment

We are very thankful to Prof. Howard Laten for critical reading of the manuscript.

References

  1. Ansari KI, Walter S, Brennan JM, Lemmens M, Kessans S, McGahern A, Egan D, Doohan FM (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114:927–937PubMedCrossRefGoogle Scholar
  2. Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279PubMedCrossRefGoogle Scholar
  3. Araujo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys M-A (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717PubMedCrossRefGoogle Scholar
  4. Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369PubMedCrossRefGoogle Scholar
  5. Ay N, Clauss K, Barth O, Humbeck K (2008) Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Plant Biol (Stuttg) 10:121–135CrossRefGoogle Scholar
  6. Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122PubMedCrossRefGoogle Scholar
  7. Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762PubMedCrossRefGoogle Scholar
  8. Britten RJ (1996) DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci USA 93:9374–9377PubMedCrossRefGoogle Scholar
  9. Burton RA, Ma G, Baumann U, Harvey AJ, Shirley NJ, Taylor J, Pettolino F, Bacic A, Beatty M, Simmons CR, Dhugga KS, Rafalski JA, Tingey SV, Fincher GB (2010) A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol 153:1716–1728PubMedCrossRefGoogle Scholar
  10. Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255PubMedCrossRefGoogle Scholar
  11. Buti M, Giordani T, Vukich M, Gentzbittel L, Pistelli L, Cattonaro F, Morgante M, Cavallini A, Natali L (2009) HACRE1, a recently inserted copia-like retrotransposon of sunflower (Helianthus annuus L.). Genome 52:904–911PubMedCrossRefGoogle Scholar
  12. Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E (2006) At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 80:10752–10762PubMedCrossRefGoogle Scholar
  13. Chang W, Schulman AH (2008) BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant J 56:40–50PubMedCrossRefGoogle Scholar
  14. Chu CG, Tan CT, Yu GT, Zhong S, Xu SS, Yan L (2011) A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3 (Bethesda) 1:637–645Google Scholar
  15. Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549PubMedCrossRefGoogle Scholar
  16. Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114PubMedCrossRefGoogle Scholar
  17. Comfort NC (1999) “The real point is control”: the reception of Barbara McClintock’s controlling elements. J Hist Biol 32:133–162PubMedCrossRefGoogle Scholar
  18. Conley AB, Miller WJ, Jordan IK (2008a) Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 24:53–56PubMedCrossRefGoogle Scholar
  19. Conley AB, Piriyapongsa J, Jordan IK (2008b) Retroviral promoters in the human genome. Bioinformatics 24:1563–1567PubMedCrossRefGoogle Scholar
  20. De Felice B, Wilson RR, Argenziano C, Kafantaris I, Conicella C (2009) A transcriptionally active copia-like retroelement in Citrus limon. Cell Mol Biol Lett 14:289–304PubMedCrossRefGoogle Scholar
  21. Dunn CA, Romanish MT, Gutierrez LE, van de Lagemaat LN, Mager DL (2006) Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 366:335–342PubMedCrossRefGoogle Scholar
  22. Echenique V, Stamova B, Wolters P, Lazo G, Carollo L, Dubcovsky J (2002) Frequencies of Ty1- copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844PubMedCrossRefGoogle Scholar
  23. Elrouby N, Bureau TE (2012) Modulation of auxin-binding protein 1 gene expression in maize and the teosintes by transposon insertions in its promoter. Mol Genet Genomics 287:143–153PubMedCrossRefGoogle Scholar
  24. Emera D, Casola C, Lynch VJ, Wildman DE, Agnew D, Wagner GP (2012) Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol Biol Evol 29:239–247PubMedCrossRefGoogle Scholar
  25. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest AR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571PubMedCrossRefGoogle Scholar
  26. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405PubMedCrossRefGoogle Scholar
  27. Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149PubMedCrossRefGoogle Scholar
  28. Galindo LM, Gaitán-Solís E, Baccam P, Tohme J (2004) Isolation and characterization of RNase LTR sequences of Ty1-copia retrotransposons in common bean (Phaseolus vulgaris L). Genome 47:84–95PubMedCrossRefGoogle Scholar
  29. Gao D, Chen J, Chen M, Meyers BC, Jackson S (2012) A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS One 7:e32010PubMedCrossRefGoogle Scholar
  30. Gerlo S, Davis JR, Mager DL, Kooijman R (2006) Prolactin in man: a tale of two promoters. Bioessays 28:1051–1055PubMedCrossRefGoogle Scholar
  31. Gogvadze E, Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 66:3727–3742PubMedCrossRefGoogle Scholar
  32. Gogvadze E, Stukacheva E, Buzdin A, Sverdlov E (2009) Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J Virol 83:6098–6105PubMedCrossRefGoogle Scholar
  33. Grandbastien M-A (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187CrossRefGoogle Scholar
  34. Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380PubMedCrossRefGoogle Scholar
  35. Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa APP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys M-A, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241PubMedCrossRefGoogle Scholar
  36. Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425PubMedCrossRefGoogle Scholar
  37. He P, Ma Y, Zhao G, Dai H, Li H, Chang L, Zhang Z (2010) FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. J Plant Res 123:707–714PubMedCrossRefGoogle Scholar
  38. Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700PubMedCrossRefGoogle Scholar
  39. Hernández-Pinzón I, Jesús E, Santiago N, Casacuberta JM (2009) The frequent transcriptional readthrough of the tobacco Tnt1 retrotransposon and its possible implications for the control of resistance genes. J Mol Evol 68:269–278PubMedCrossRefGoogle Scholar
  40. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528PubMedGoogle Scholar
  41. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788PubMedCrossRefGoogle Scholar
  42. Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327PubMedCrossRefGoogle Scholar
  43. Huda A, Bowen NJ, Conley AB, Jordan IK (2011) Epigenetic regulation of transposable element derived human gene promoters. Gene 475:39–48PubMedCrossRefGoogle Scholar
  44. Huettel B, Kanno T, Daxinger L, Aufsatz W, Matzke AJ, Matzke M (2006) Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J 25:2828–2836PubMedCrossRefGoogle Scholar
  45. Ito H (2012) Small RNAs and transposon silencing in plants. Dev Growth Differ 54:100–107CrossRefGoogle Scholar
  46. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119PubMedCrossRefGoogle Scholar
  47. Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J 31:615–627PubMedCrossRefGoogle Scholar
  48. Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LH, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125PubMedCrossRefGoogle Scholar
  49. Johns MA, Mottinger J, Freeling M (1985) A low copy number, copia-like transposon in maize. EMBO J 4:1093–1101Google Scholar
  50. Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72PubMedCrossRefGoogle Scholar
  51. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCrossRefGoogle Scholar
  52. Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M, Lorincz MC (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8:676–687PubMedCrossRefGoogle Scholar
  53. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985PubMedCrossRefGoogle Scholar
  54. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106PubMedCrossRefGoogle Scholar
  55. Kato H, Sriprasertsak P, Seki H, Ichinose Y, Shiraishi T, Yamada T (1999) Functional analysis of retrotransposons in pea. Plant Cell Physiol 40:933–941PubMedCrossRefGoogle Scholar
  56. Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animal and plants. Proc Natl Acad Sci USA 94:7704–7711PubMedCrossRefGoogle Scholar
  57. Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S (2001) OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol 42:1345–1354PubMedCrossRefGoogle Scholar
  58. Kines KJ, Belancio VP (2012) Expressing genes do not forget their LINEs: transposable elements and gene expression. Front Biosci 17:1329–1344PubMedCrossRefGoogle Scholar
  59. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedCrossRefGoogle Scholar
  60. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634PubMedCrossRefGoogle Scholar
  61. Li J, Dudas B, Webster MA, Cook HE, Davies BH, Gilmartin PM (2010) Hose in Hose, an S locus-linked mutant of Primula vulgaris, is caused by an unstable mutation at the Globosa locus. Proc Natl Acad Sci USA 107:5664–5668PubMedCrossRefGoogle Scholar
  62. Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Liu B (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet 109:200–209PubMedCrossRefGoogle Scholar
  63. Long L, Ou X, Liu J, Lin X, Sheng L, Liu B (2009) The spaceflight environment can induce transpositional activation of multiple endogenous transposable elements in a genotype-dependent manner in rice. J Plant Physiol 166:2035–2045PubMedCrossRefGoogle Scholar
  64. Lopes FR, Carazzolle MF, Pereira GA, Colombo CA, Carareto CM (2008) Transposable elements in Coffea (Gentianales: Rubiacea) transcripts and their role in the origin of protein diversity in flowering plants. Mol Genet Genomics 279:385–401PubMedCrossRefGoogle Scholar
  65. Lu HF, Dong HT, Sun CB, Qing DJ, Li N, Wu ZK, Wang ZQ, Li YZ (2011) The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering. Theor Appl Genet 123:943–958PubMedCrossRefGoogle Scholar
  66. Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154–1159PubMedCrossRefGoogle Scholar
  67. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63Google Scholar
  68. Manetti ME, Rossi M, Nakabashi M, Grandbastien M-A, Van Sluys M-A (2009) The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Mol Genet Genomics 281:261–271PubMedCrossRefGoogle Scholar
  69. Mariño-Ramírez L, Jordan IK (2006) Transposable element derived DNaseI-hypersensitive sites in the human genome. Biol Direct 1:20PubMedCrossRefGoogle Scholar
  70. McCue AD, Nuthikattu S, Reeder SH, Slotkin RK (2012) Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 8:e1002474PubMedCrossRefGoogle Scholar
  71. McDonald JF (1990) Macroevolution and retroviral elements. Bioscience 40:183–191CrossRefGoogle Scholar
  72. Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL (2005) Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 110:342–352PubMedCrossRefGoogle Scholar
  73. Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP (1994) Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8:1463–1472PubMedCrossRefGoogle Scholar
  74. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274PubMedCrossRefGoogle Scholar
  75. Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264PubMedCrossRefGoogle Scholar
  76. Muthukumar B, Bennetzen JL (2004) Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. Mol Genet Genomics 271:308–316PubMedCrossRefGoogle Scholar
  77. Pearce SR, Kumar A, Flavell AJ (1996) Activation of the Ty1-copia group retrotransposons of potato (Solanum tuberosum) during protoplast isolation. Plant Cell Rep 16:949–953CrossRefGoogle Scholar
  78. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606PubMedCrossRefGoogle Scholar
  79. Pereira V, Enard D, Eyre-Walker A (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS One 4:e4321PubMedCrossRefGoogle Scholar
  80. Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D (2010) Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci USA 107:12992–12997PubMedCrossRefGoogle Scholar
  81. Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765PubMedCrossRefGoogle Scholar
  82. Pischke MS, Huttlin EL, Hegeman AD, Sussman MR (2006) A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol 140:1255–1278PubMedCrossRefGoogle Scholar
  83. Polavarapu N, Mariño-Ramírez L, Landsman D, McDonald JF, Jordan IK (2008) Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9:226PubMedCrossRefGoogle Scholar
  84. Rajput MK, Upadhyaya KC (2009) CARE1, a Ty3-gypsy like LTR-retrotransposon in the food legume chickpea (Cicer arietinum L.). Genetica 136:429–437PubMedCrossRefGoogle Scholar
  85. Rakocevic A, Mondy S, Tirichine L, Cosson V, Brocard L, Iantcheva A, Cayrel A, Devier B, Abu El-Heba GA, Ratet P (2009) MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151:1250–1263PubMedCrossRefGoogle Scholar
  86. Ramallo E, Kalendar R, Schulman AH, Martínez-Izquierdo JA (2008) Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol 66:137–150PubMedCrossRefGoogle Scholar
  87. Rico-Cabanas L, Martínez-Izquierdo JA (2007) CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 277:365–377PubMedCrossRefGoogle Scholar
  88. Robins DM, Samuelson LC (1992) Retrotransposons and the evolution of mammalian gene expression. Genetica 86:191–201PubMedCrossRefGoogle Scholar
  89. Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL (2007) Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 3:e10PubMedCrossRefGoogle Scholar
  90. Rotter D, Bharti AK, Li HM, Luo C, Bonos SA, Bughrara S, Jung G, Messing J, Meyer WA, Rudd S, Warnke SE, Belanger FC (2007) Analysis of EST sequences suggests recent origin of allotetraploid colonial and creeping bentgrasses. Mol Genet Genomics 278:197–209PubMedCrossRefGoogle Scholar
  91. Sabot F, Sourdille P, Chantret N, Bernard M (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128:439–447PubMedCrossRefGoogle Scholar
  92. Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C, Piegu B, Roulin A, Guiderdoni E, Delabastide M, McCombie R, Panaud O (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J 66:241–246PubMedCrossRefGoogle Scholar
  93. Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26:1861–1868PubMedCrossRefGoogle Scholar
  94. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A, Kutter C, Brown GD, Marshall A, Flicek P, Odom DT (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:335–348PubMedCrossRefGoogle Scholar
  95. Shapiro JA (2005) Retrotransposons and regulatory suites. Bioessays 27:122–125PubMedCrossRefGoogle Scholar
  96. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285PubMedCrossRefGoogle Scholar
  97. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746PubMedCrossRefGoogle Scholar
  98. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163PubMedCrossRefGoogle Scholar
  99. Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306PubMedCrossRefGoogle Scholar
  100. Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweetpotato genome. Mol Genet Genomics 272:116–127PubMedCrossRefGoogle Scholar
  101. Takeda S, Sugimoto K, Kakutani T, Hirochika H (2001) Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. Plant J 28:307–317PubMedCrossRefGoogle Scholar
  102. Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895PubMedCrossRefGoogle Scholar
  103. Tapia G, Verdugo I, Yañez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086PubMedCrossRefGoogle Scholar
  104. Thomson SJ, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BM, Udalova IA (2009) The role of transposable elements in the regulation of IFN-lambda1 gene expression. Proc Natl Acad Sci USA 106:11564–11569PubMedCrossRefGoogle Scholar
  105. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507PubMedCrossRefGoogle Scholar
  106. Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873PubMedCrossRefGoogle Scholar
  107. Van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536PubMedCrossRefGoogle Scholar
  108. Verne S, Jaquish B, White R, Ritland C, Ritland K (2011) Global transcriptome analysis of constitutive resistance to the white pine weevil in spruce. Genome Biol Evol 3:851–867PubMedCrossRefGoogle Scholar
  109. Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics 11:601PubMedCrossRefGoogle Scholar
  110. Vicient CM, Jääskeläinen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292PubMedCrossRefGoogle Scholar
  111. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104:18613–18618PubMedCrossRefGoogle Scholar
  112. Wang J, Bowen NJ, Mariño-Ramírez L, Jordan IK (2009) A c-Myc regulatory subnetwork from human transposable element sequences. Mol Biosyst 5:1831–1839PubMedCrossRefGoogle Scholar
  113. Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T (2010) The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res 18:247–263PubMedCrossRefGoogle Scholar
  114. White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796PubMedCrossRefGoogle Scholar
  115. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  116. Woodrow P, Pontecorvo G, Ciarmiello LF, Fuggi A, Carillo P (2011) Ttd1a promoter is involved in DNA-protein binding by salt and light stresses. Mol Biol Rep 38:3787–3794PubMedCrossRefGoogle Scholar
  117. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082PubMedCrossRefGoogle Scholar
  118. Zhang JJ, Zhou ZS, Song JB, Liu ZP, Yang H (2012) Molecular dissection of atrazine-responsive transcriptome and gene networks in rice by high-throughput sequencing. J Hazard Mater 219–220:57–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut Jean Pierre Bourgin, UMR 1318 INRA/AgroParisTech, INRA-VersaillesVersailles CedexFrance

Personalised recommendations