Skip to main content

LTR Retrotransposons as Controlling Elements of Genome Response to Stress?

  • Chapter
  • First Online:
Plant Transposable Elements

Part of the book series: Topics in Current Genetics ((TCG,volume 24))

Abstract

Transposable elements can impact gene expression and regulatory patterns. This is particularly true for LTR retrotransposons, whose Long Terminal Repeats (LTRs) promoter/regulatory capsules are present at both ends of the element and make them particularly prone to influencing adjacent genes. LTRs can act as promoters, as sources of regulatory sequences, or initiate antisense transcripts regulating gene expression. As a consequence, LTR responses to specific stimuli can influence adjacent host genes and contribute to the organism’s response to these stimuli. Most plant LTR retrotransposons are activated in response to stress or environmental changes, and in this review, we will update current data on this stress response. After a short journey across the animal kingdom, where the regulatory impact of LTRs is well documented, we will present recent reports suggesting that LTRs may also play a role in the modulation of gene expression and in the generation of phenotypic plasticity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ERV:

Endogenous Retroviral Element

LINE:

Long INterspersed Nuclear Element

LTR:

Long Terminal Repeat

SINE:

Short INterspersed Nuclear Element

TE:

Transposable Element

TSS:

Transcription Start Site

References

  • Ansari KI, Walter S, Brennan JM, Lemmens M, Kessans S, McGahern A, Egan D, Doohan FM (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114:927–937

    Article  PubMed  CAS  Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    Article  PubMed  CAS  Google Scholar 

  • Araujo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys M-A (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717

    Article  PubMed  CAS  Google Scholar 

  • Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369

    Article  PubMed  CAS  Google Scholar 

  • Ay N, Clauss K, Barth O, Humbeck K (2008) Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Plant Biol (Stuttg) 10:121–135

    Article  CAS  Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122

    Article  PubMed  CAS  Google Scholar 

  • Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ (1996) DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci USA 93:9374–9377

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Ma G, Baumann U, Harvey AJ, Shirley NJ, Taylor J, Pettolino F, Bacic A, Beatty M, Simmons CR, Dhugga KS, Rafalski JA, Tingey SV, Fincher GB (2010) A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol 153:1716–1728

    Article  PubMed  CAS  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  PubMed  CAS  Google Scholar 

  • Buti M, Giordani T, Vukich M, Gentzbittel L, Pistelli L, Cattonaro F, Morgante M, Cavallini A, Natali L (2009) HACRE1, a recently inserted copia-like retrotransposon of sunflower (Helianthus annuus L.). Genome 52:904–911

    Article  PubMed  CAS  Google Scholar 

  • Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E (2006) At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 80:10752–10762

    Article  PubMed  CAS  Google Scholar 

  • Chang W, Schulman AH (2008) BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant J 56:40–50

    Article  PubMed  CAS  Google Scholar 

  • Chu CG, Tan CT, Yu GT, Zhong S, Xu SS, Yan L (2011) A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3 (Bethesda) 1:637–645

    CAS  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    Article  PubMed  CAS  Google Scholar 

  • Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114

    Article  PubMed  CAS  Google Scholar 

  • Comfort NC (1999) “The real point is control”: the reception of Barbara McClintock’s controlling elements. J Hist Biol 32:133–162

    Article  PubMed  CAS  Google Scholar 

  • Conley AB, Miller WJ, Jordan IK (2008a) Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 24:53–56

    Article  PubMed  CAS  Google Scholar 

  • Conley AB, Piriyapongsa J, Jordan IK (2008b) Retroviral promoters in the human genome. Bioinformatics 24:1563–1567

    Article  PubMed  CAS  Google Scholar 

  • De Felice B, Wilson RR, Argenziano C, Kafantaris I, Conicella C (2009) A transcriptionally active copia-like retroelement in Citrus limon. Cell Mol Biol Lett 14:289–304

    Article  PubMed  CAS  Google Scholar 

  • Dunn CA, Romanish MT, Gutierrez LE, van de Lagemaat LN, Mager DL (2006) Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 366:335–342

    Article  PubMed  CAS  Google Scholar 

  • Echenique V, Stamova B, Wolters P, Lazo G, Carollo L, Dubcovsky J (2002) Frequencies of Ty1- copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

    Article  PubMed  CAS  Google Scholar 

  • Elrouby N, Bureau TE (2012) Modulation of auxin-binding protein 1 gene expression in maize and the teosintes by transposon insertions in its promoter. Mol Genet Genomics 287:143–153

    Article  PubMed  CAS  Google Scholar 

  • Emera D, Casola C, Lynch VJ, Wildman DE, Agnew D, Wagner GP (2012) Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol Biol Evol 29:239–247

    Article  PubMed  CAS  Google Scholar 

  • Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest AR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  PubMed  CAS  Google Scholar 

  • Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149

    Article  PubMed  CAS  Google Scholar 

  • Galindo LM, Gaitán-Solís E, Baccam P, Tohme J (2004) Isolation and characterization of RNase LTR sequences of Ty1-copia retrotransposons in common bean (Phaseolus vulgaris L). Genome 47:84–95

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Chen J, Chen M, Meyers BC, Jackson S (2012) A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS One 7:e32010

    Article  PubMed  CAS  Google Scholar 

  • Gerlo S, Davis JR, Mager DL, Kooijman R (2006) Prolactin in man: a tale of two promoters. Bioessays 28:1051–1055

    Article  PubMed  CAS  Google Scholar 

  • Gogvadze E, Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 66:3727–3742

    Article  PubMed  CAS  Google Scholar 

  • Gogvadze E, Stukacheva E, Buzdin A, Sverdlov E (2009) Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J Virol 83:6098–6105

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien M-A (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa APP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys M-A, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    Article  PubMed  CAS  Google Scholar 

  • He P, Ma Y, Zhao G, Dai H, Li H, Chang L, Zhang Z (2010) FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. J Plant Res 123:707–714

    Article  PubMed  CAS  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Pinzón I, Jesús E, Santiago N, Casacuberta JM (2009) The frequent transcriptional readthrough of the tobacco Tnt1 retrotransposon and its possible implications for the control of resistance genes. J Mol Evol 68:269–278

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327

    Article  PubMed  CAS  Google Scholar 

  • Huda A, Bowen NJ, Conley AB, Jordan IK (2011) Epigenetic regulation of transposable element derived human gene promoters. Gene 475:39–48

    Article  PubMed  CAS  Google Scholar 

  • Huettel B, Kanno T, Daxinger L, Aufsatz W, Matzke AJ, Matzke M (2006) Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J 25:2828–2836

    Article  PubMed  CAS  Google Scholar 

  • Ito H (2012) Small RNAs and transposon silencing in plants. Dev Growth Differ 54:100–107

    Article  CAS  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  PubMed  CAS  Google Scholar 

  • Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J 31:615–627

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LH, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125

    Article  PubMed  CAS  Google Scholar 

  • Johns MA, Mottinger J, Freeling M (1985) A low copy number, copia-like transposon in maize. EMBO J 4:1093–1101

    Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M, Lorincz MC (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8:676–687

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Sriprasertsak P, Seki H, Ichinose Y, Shiraishi T, Yamada T (1999) Functional analysis of retrotransposons in pea. Plant Cell Physiol 40:933–941

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animal and plants. Proc Natl Acad Sci USA 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S (2001) OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol 42:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • Kines KJ, Belancio VP (2012) Expressing genes do not forget their LINEs: transposable elements and gene expression. Front Biosci 17:1329–1344

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634

    Article  PubMed  CAS  Google Scholar 

  • Li J, Dudas B, Webster MA, Cook HE, Davies BH, Gilmartin PM (2010) Hose in Hose, an S locus-linked mutant of Primula vulgaris, is caused by an unstable mutation at the Globosa locus. Proc Natl Acad Sci USA 107:5664–5668

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Liu B (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet 109:200–209

    Article  PubMed  CAS  Google Scholar 

  • Long L, Ou X, Liu J, Lin X, Sheng L, Liu B (2009) The spaceflight environment can induce transpositional activation of multiple endogenous transposable elements in a genotype-dependent manner in rice. J Plant Physiol 166:2035–2045

    Article  PubMed  CAS  Google Scholar 

  • Lopes FR, Carazzolle MF, Pereira GA, Colombo CA, Carareto CM (2008) Transposable elements in Coffea (Gentianales: Rubiacea) transcripts and their role in the origin of protein diversity in flowering plants. Mol Genet Genomics 279:385–401

    Article  PubMed  CAS  Google Scholar 

  • Lu HF, Dong HT, Sun CB, Qing DJ, Li N, Wu ZK, Wang ZQ, Li YZ (2011) The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering. Theor Appl Genet 123:943–958

    Article  PubMed  Google Scholar 

  • Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63

    Google Scholar 

  • Manetti ME, Rossi M, Nakabashi M, Grandbastien M-A, Van Sluys M-A (2009) The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Mol Genet Genomics 281:261–271

    Article  PubMed  CAS  Google Scholar 

  • Mariño-Ramírez L, Jordan IK (2006) Transposable element derived DNaseI-hypersensitive sites in the human genome. Biol Direct 1:20

    Article  PubMed  CAS  Google Scholar 

  • McCue AD, Nuthikattu S, Reeder SH, Slotkin RK (2012) Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet 8:e1002474

    Article  PubMed  CAS  Google Scholar 

  • McDonald JF (1990) Macroevolution and retroviral elements. Bioscience 40:183–191

    Article  Google Scholar 

  • Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL (2005) Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 110:342–352

    Article  PubMed  CAS  Google Scholar 

  • Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP (1994) Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8:1463–1472

    Article  PubMed  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar B, Bennetzen JL (2004) Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. Mol Genet Genomics 271:308–316

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Kumar A, Flavell AJ (1996) Activation of the Ty1-copia group retrotransposons of potato (Solanum tuberosum) during protoplast isolation. Plant Cell Rep 16:949–953

    Article  Google Scholar 

  • Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606

    Article  PubMed  CAS  Google Scholar 

  • Pereira V, Enard D, Eyre-Walker A (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS One 4:e4321

    Article  PubMed  CAS  Google Scholar 

  • Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D (2010) Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci USA 107:12992–12997

    Article  PubMed  CAS  Google Scholar 

  • Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765

    Article  PubMed  CAS  Google Scholar 

  • Pischke MS, Huttlin EL, Hegeman AD, Sussman MR (2006) A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol 140:1255–1278

    Article  PubMed  CAS  Google Scholar 

  • Polavarapu N, Mariño-Ramírez L, Landsman D, McDonald JF, Jordan IK (2008) Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9:226

    Article  PubMed  CAS  Google Scholar 

  • Rajput MK, Upadhyaya KC (2009) CARE1, a Ty3-gypsy like LTR-retrotransposon in the food legume chickpea (Cicer arietinum L.). Genetica 136:429–437

    Article  PubMed  CAS  Google Scholar 

  • Rakocevic A, Mondy S, Tirichine L, Cosson V, Brocard L, Iantcheva A, Cayrel A, Devier B, Abu El-Heba GA, Ratet P (2009) MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151:1250–1263

    Article  PubMed  CAS  Google Scholar 

  • Ramallo E, Kalendar R, Schulman AH, Martínez-Izquierdo JA (2008) Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol 66:137–150

    Article  PubMed  CAS  Google Scholar 

  • Rico-Cabanas L, Martínez-Izquierdo JA (2007) CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 277:365–377

    Article  PubMed  CAS  Google Scholar 

  • Robins DM, Samuelson LC (1992) Retrotransposons and the evolution of mammalian gene expression. Genetica 86:191–201

    Article  PubMed  CAS  Google Scholar 

  • Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL (2007) Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 3:e10

    Article  PubMed  CAS  Google Scholar 

  • Rotter D, Bharti AK, Li HM, Luo C, Bonos SA, Bughrara S, Jung G, Messing J, Meyer WA, Rudd S, Warnke SE, Belanger FC (2007) Analysis of EST sequences suggests recent origin of allotetraploid colonial and creeping bentgrasses. Mol Genet Genomics 278:197–209

    Article  PubMed  CAS  Google Scholar 

  • Sabot F, Sourdille P, Chantret N, Bernard M (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128:439–447

    Article  PubMed  CAS  Google Scholar 

  • Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C, Piegu B, Roulin A, Guiderdoni E, Delabastide M, McCombie R, Panaud O (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J 66:241–246

    Article  PubMed  CAS  Google Scholar 

  • Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A, Kutter C, Brown GD, Marshall A, Flicek P, Odom DT (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:335–348

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA (2005) Retrotransposons and regulatory suites. Bioessays 27:122–125

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  PubMed  CAS  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306

    Article  PubMed  CAS  Google Scholar 

  • Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweetpotato genome. Mol Genet Genomics 272:116–127

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Kakutani T, Hirochika H (2001) Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. Plant J 28:307–317

    Article  PubMed  CAS  Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895

    Article  PubMed  CAS  Google Scholar 

  • Tapia G, Verdugo I, Yañez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086

    Article  PubMed  CAS  Google Scholar 

  • Thomson SJ, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BM, Udalova IA (2009) The role of transposable elements in the regulation of IFN-lambda1 gene expression. Proc Natl Acad Sci USA 106:11564–11569

    Article  PubMed  CAS  Google Scholar 

  • Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873

    Article  PubMed  CAS  Google Scholar 

  • Van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  CAS  Google Scholar 

  • Verne S, Jaquish B, White R, Ritland C, Ritland K (2011) Global transcriptome analysis of constitutive resistance to the white pine weevil in spruce. Genome Biol Evol 3:851–867

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics 11:601

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Jääskeläinen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104:18613–18618

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Bowen NJ, Mariño-Ramírez L, Jordan IK (2009) A c-Myc regulatory subnetwork from human transposable element sequences. Mol Biosyst 5:1831–1839

    Article  PubMed  CAS  Google Scholar 

  • Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T (2010) The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res 18:247–263

    Article  PubMed  CAS  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Woodrow P, Pontecorvo G, Ciarmiello LF, Fuggi A, Carillo P (2011) Ttd1a promoter is involved in DNA-protein binding by salt and light stresses. Mol Biol Rep 38:3787–3794

    Article  PubMed  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  • Zhang JJ, Zhou ZS, Song JB, Liu ZP, Yang H (2012) Molecular dissection of atrazine-responsive transcriptome and gene networks in rice by high-throughput sequencing. J Hazard Mater 219–220:57–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are very thankful to Prof. Howard Laten for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Angèle Grandbastien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bui, Q.T., Grandbastien, MA. (2012). LTR Retrotransposons as Controlling Elements of Genome Response to Stress?. In: Grandbastien, MA., Casacuberta, J. (eds) Plant Transposable Elements. Topics in Current Genetics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31842-9_14

Download citation

Publish with us

Policies and ethics