Modeling Concepts for Consistency Analysis of Multiple Representations and Heterogeneous 3D Geodata

  • Susanne Becker
  • Volker Walter
  • Dieter Fritsch
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


In a dynamic world where the steadily increasing demand for up-to-date geodata drives the continuous acquisition of three-dimensional (3D) data, appropriate systems for managing and analyzing the resulting data become more and more important. Efficient solutions for handling multiple representations and data heterogeneity are of special significance. Existing geoinformation systems are still not able to cope with the huge diversity of geodata. Available approaches and systems that apply merging processes in order to generate one single representation for each real-world object are not practicable any more. Thus, our goal is a hybrid 3D geoinformation system that allows for integrated management of heterogeneous and multiply-represented geodata. Our concept is hybrid with respect to data given in different data models, dimensions, and quality levels. Multiple representations and data inconsistency can be handled through the explicit modeling of geometric correspondences.


GIS Integration Modeling Three-dimensional Consistency 


  1. Alt H, Guibas LJ (1996) Discrete geometric shapes: matching, interpolation, and approximation: a survey. In: Technical report B 96-11, EVL-1996-142, Institute of Computer Science, Freie Universität BerlinGoogle Scholar
  2. Andrae C (2009) Spatial Schema—ISO 19107 und ISO 19137 vorgestellt und erklärt. From the series. In: Andrae C, Fitzke J, Zipf A (eds) OpenGIS essentials—Die Geo-Standards von OGC und ISO im Überblick. Wichmann, HeidelbergGoogle Scholar
  3. Bishr Y (1998) Overcoming the semantic and other barriers to GIS interoperability. Int J Geograph Inf Sci 12(4):299–314CrossRefGoogle Scholar
  4. Chen T, Schneider M (2009) Data structures and intersection algorithms for 3D spatial data types. In: Proceedings of the 17 ACM SIGSPATIAL, pp 148–157Google Scholar
  5. Dakowicz M, Gold C (2010) A unified spatial model for GIS. In: IAPRSSIS, Hong Kong, vol XXVIII, part 2, pp 22–27Google Scholar
  6. Fritsch D (1988) Hybride graphische Systeme—eine neue Generation von raumbezogenen Informations systemen. Geo-Informations-Systeme 1(1):12–19Google Scholar
  7. Gröger G, Kolbe TH (2003) Interoperabilität in einer 3D-Geodateninfrastruktur. In: Proceedings of Münsteraner GI-Tage 2003, pp 325–343Google Scholar
  8. Gröger G, Plümer L (2011) How to achieve consistency for 3D city models. GeoInformatica 15(1):137–165CrossRefGoogle Scholar
  9. Gröger G, Benner J, Dörschlag D, Dress R, Gruber U, Leinemann K, Löwner MO (2005) Das interoperable 3D-Stadtmodell der SIG 3D. ZfV 6:343–353Google Scholar
  10. Herring J (2001) The OpenGIS abstract specification, topic 1: feature geometry (ISO 19107 spatial schema), version 5. OGC Doc. No. 01-101Google Scholar
  11. Inhye P, Hyeyoung K, Chulmin J (2007) 2D-3D Hybrid data modeling. In: Proceedings of the 27 annual ESRI user conference, San Diego (on CD-ROM)Google Scholar
  12. Kolbe TH, Gröger G, Plümer L (2005) CityGML—interoperable access to 3D city models. In: Oosterom P, Zlatanova S, Fendel EM (eds) Proceedings of the 1st international symposium on geoinformation for disaster management. Springer, pp 883–899Google Scholar
  13. Lee J, Zlatanova S (2008) A 3D data model and topological analyses for emergency response in urban areas. In: Geospatial information technology for emergency response, Taylor & Francis Group, London, UK, pp 143–168Google Scholar
  14. Peter M (2009) Presentation and evaluation of inconsistencies in multiply represented 3D building models. In: Rothermel K, Fritsch D, Blochinger W, Dürr F (eds) Quality of context: first international workshop, QuaCon 2009, Stuttgart, pp 156–163Google Scholar
  15. Proctor MD, Gerber WJ (2004) Line-of-sight attributes for a generalized application program interface. J Defense Model Simul: Appl Methodol Technol 1(1):43–57Google Scholar
  16. Stekolschik A (2007) Beitrag zum ganzheitlichen Qualitätsmanagement von CAD-Modellen in der Produktentstehung. Dissertation, Uni BochumGoogle Scholar
  17. Volz S, Walter V (2004) Linking different geospatial databases by explicit relations. In: Proceedings of the 20 ISPRS congress, Com IV, Istanbul, pp 152–157Google Scholar
  18. Voudouris V (2010) Towards a unifying formalisation of geographic representation: the object-field model with uncertainty and semantics. Int J Geograph Inf Sci 24(12):1811–1828CrossRefGoogle Scholar
  19. Walter V (1997) Zuordnung von raumbezogenen Daten—am Beispiel von ATKIS und GDF. Dissertation, DGK, Reihe C, Nr. 480, MünchenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for PhotogrammetryUniversity of StuttgartStuttgartGermany

Personalised recommendations