Advertisement

Finding Representative Nodes in Probabilistic Graphs

  • Laura Langohr
  • Hannu Toivonen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7250)

Abstract

We introduce the problem of identifying representative nodes in probabilistic graphs, motivated by the need to produce different simple views to large BisoNets. We define a probabilistic similarity measure for nodes, and then apply clustering methods to find groups of nodes. Finally, a representative is output from each cluster. We report on experiments with real biomedical data, using both the k-medoids and hierarchical clustering methods in the clustering step. The results suggest that the clustering based approaches are capable of finding a representative set of nodes.

References

  1. 1.
    Kötter, T., Berthold, M.R.: From Information Networks to Bisociative Information Networks. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250, pp. 33–50. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link Discovery in Graphs Derived from Biological Databases. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 907–916. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley Inc., New York (1990)CrossRefGoogle Scholar
  5. 5.
    Ester, M., Kriegel, H.P., Xu, X.: Knowledge discovery in large spatial databases: focusing techniques for efficient class identification. In: 4th International Symposium on Advances in Spatial Databases (SDD 1995), pp. 67–82. Springer, London (1995)CrossRefGoogle Scholar
  6. 6.
    Riquelme, J.C., Aguilar-Ruiz, J.S., Toro, M.: Finding representative patterns with ordered projections. Pattern Recognition 36(4), 1009–1018 (2003)CrossRefGoogle Scholar
  7. 7.
    Rozsypal, A., Kubat, M.: Selecting representative examples and attributes by a genetic algorithm. Intelligent Data Analysis 7(4), 291–304 (2003)CrossRefGoogle Scholar
  8. 8.
    Pan, F., Wang, W., Tung, A.K.H., Yang, J.: Finding representative set from massive data. In: The 5th IEEE International Conference on Data Mining (ICDM 2005), pp. 338–345. IEEE Computer Society, Washington, DC (2005)Google Scholar
  9. 9.
    DeLucia, D., Obraczka, K.: Multicast feedback suppression using representatives. In: 16th Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution (INFOCOM 1997), pp. 463–470. IEEE Computer Society, Washington, DC (1997)Google Scholar
  10. 10.
    Liang, C., Hock, N.C., Liren, Z.: Selection of representatives for feedback suppression in reliable multicast protocols. Electronics Letters 37(1), 23–25 (2001)CrossRefGoogle Scholar
  11. 11.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2001), pp. 57–66. ACM, New York (2001)Google Scholar
  12. 12.
    Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), pp. 404–413. ACM, New York (2006)CrossRefGoogle Scholar
  13. 13.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1999)Google Scholar
  14. 14.
    Colbourn, C.J.: The Combinatiorics of Network Reliability. Oxford University Press (1987)Google Scholar
  15. 15.
    Valiant, L.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8, 410–421 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic graphs. Data Mining and Knowledge Discovery 17(1), 3–23 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Han, J., Kamber, M.: Data Mining. Concepts and Techniques, 2nd edn. Morgan Kaufmann (2006)Google Scholar
  18. 18.
    Köhler, S., Bauer, S., Horn, D., Robinson, P.: Walking the interactome for prioritization of candidate disease genes. American Journal of Human Genetics 82(4), 949–958 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Laura Langohr
    • 1
  • Hannu Toivonen
    • 1
  1. 1.Department of Computer Science and Helsinki Institute for Information Technology HIITUniversity of HelsinkiFinland

Personalised recommendations