Community Structure and Diffusion Dynamics on Networks

  • Hua-Wei Shen
Part of the Springer Theses book series (Springer Theses)


As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this chapter, we study the community structure associated with network dynamics by investigating the diffusion process on networks. We find that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that the spectrum of network plays critical roles at bridging the community structure and the dynamics on networks. We compare the spectrum of different matrices at detecting community structure associated with network dynamics. This chapter provides insights into the multiple topological scales of networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network.


Adjacency Matrix Node Degree Community Detection Normalize Mutual Information Laplacian Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004) CrossRefGoogle Scholar
  3. 3.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005) CrossRefGoogle Scholar
  4. 4.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006) CrossRefGoogle Scholar
  5. 5.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008) CrossRefGoogle Scholar
  6. 6.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008) Google Scholar
  7. 7.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Arenas, A., Dìaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007) CrossRefGoogle Scholar
  11. 11.
    Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039 (2008) CrossRefGoogle Scholar
  12. 12.
    Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006) CrossRefGoogle Scholar
  13. 13.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. Lect. Notes Comput. Sci. 3733, 284–293 (2005) CrossRefGoogle Scholar
  14. 14.
    Zhou, H.: Network landscape from a Brownian particle’s perspective. Phys. Rev. E 67, 041908 (2003) CrossRefGoogle Scholar
  15. 15.
    Zhou, H.: Distance, dissimilarity index, and network community structure. Phys. Rev. E 67, 061901 (2003) CrossRefGoogle Scholar
  16. 16.
    Delvene, J.C., Yaliraki, S.N., Barahona, M.: Stability of graph communities across time scales. arXiv:0812.1811
  17. 17.
    Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92, 118701 (2004) CrossRefGoogle Scholar
  18. 18.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008) zbMATHCrossRefGoogle Scholar
  19. 19.
    Cheng, X.Q., Shen, H.W.: Uncovering the community structure associated with the diffusion dynamics on networks. J. Stat. Mech. P04024 (2010) Google Scholar
  20. 20.
    Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2008) CrossRefGoogle Scholar
  21. 21.
    Yu, S.X., Shi, J.: In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 313–319 (2003) CrossRefGoogle Scholar
  22. 22.
    Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80, 016105 (2009) CrossRefGoogle Scholar
  23. 23.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008) CrossRefGoogle Scholar
  24. 24.
    Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 (2005) Google Scholar
  25. 25.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977) Google Scholar
  26. 26.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Can geographic isolation explain this unique trait? Behav. Ecol. Sociobiol. 54, 396–405 (2003) CrossRefGoogle Scholar
  27. 27.
    Chauhan, S., Girvan, M., Ott, E.: Spectral properties of networks with community structure. Phys. Rev. E 80, 056114 (2009) CrossRefGoogle Scholar
  28. 28.
    Fiedler, M.: Property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslov. Math. J. 25, 619–633 (1975) MathSciNetGoogle Scholar
  29. 29.
    Yan, G., Chen, G.R., Lü, J.H., Fu, Z.Q.: Synchronization performance of complex oscillator networks. Phys. Rev. E 80, 056116 (2009) CrossRefGoogle Scholar
  30. 30.
    Capocci, C., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: Detecting communities in large networks. Physica A 352, 669–676 (2005) CrossRefGoogle Scholar
  31. 31.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shen, H.W., Cheng, X.Q., Fang, B.X.: Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E 82, 016114 (2010) CrossRefGoogle Scholar
  33. 33.
    Ding, C., He, X.: In: Proceedings of the 21st International Conference on Machine Learning, pp. 225–232 (2004) Google Scholar
  34. 34.
    Shen, H.W., Cheng, X.Q.: Spectral methods for the detection of network community structure: a comparative analysis. J. Stat. Mech. P10020 (2010) Google Scholar
  35. 35.
    Lambiotte, R., Delvenne, J.C., Barahona, M.: Laplacian dynamics and multiscale modular structure in networks. arXiv:0812.1770 (2008)
  36. 36.
    Ronhovde, P., Nussinov, Z.: Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 80, 016109 (2009) CrossRefGoogle Scholar
  37. 37.
    Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010) CrossRefGoogle Scholar
  38. 38.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658–2663 (2004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hua-Wei Shen
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations