Community Structure: An Introduction

  • Hua-Wei Shen
Part of the Springer Theses book series (Springer Theses)


As a salient and important structural characteristic of real world networks, community structure is increasingly attracting much research attention from various fields. In this chapter, we will briefly introduce the research progress about the detection of community structure in networks. These include community definition, community detection methods, community evolution, measurements for evaluation, and test datasets used in this monograph. We also describe the unresolved problems which deserves much more efforts in the future. This chapter can serve as a brief survey for beginners to the study of community structure in networks.


Maximal Clique Community Detection Real World Network Link Density Local Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001) CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002) zbMATHCrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Euler, L.: Solutio problematis ad geometrian situs pertinentis. Comment. Acad. Sci. Petropolitanae 8, 128–140 (1736) Google Scholar
  5. 5.
    Bollobas, B.: Modern Graph Theory. Springer, New York (1998) zbMATHCrossRefGoogle Scholar
  6. 6.
    Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959) MathSciNetGoogle Scholar
  7. 7.
    Mendes, J.F.F., Dorogovtsev, S.N.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003) zbMATHGoogle Scholar
  8. 8.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008) zbMATHCrossRefGoogle Scholar
  10. 10.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  12. 12.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, pp. 631–640 (2010) CrossRefGoogle Scholar
  14. 14.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Freeman, L.C.: The Development of Social Network Analysis: A Study in the Sociology of Science. BookSurge Publishing, North Charleston (2004) Google Scholar
  17. 17.
    Flake, G.W., Lawrence, S.R., Giles, C.L., Coetzee, F.M.: Self-organization and identification of Web communities. IEEE Comput. 35, 66–71 (2002) CrossRefGoogle Scholar
  18. 18.
    Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133 (2003) CrossRefGoogle Scholar
  19. 19.
    Chen, J., Yuan, B.: Detecting functional modules in the yeast protein interaction network. Bioinformatics 22, 2283–2290 (2006) CrossRefGoogle Scholar
  20. 20.
    Guimerà, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005) CrossRefGoogle Scholar
  21. 21.
    Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000) CrossRefGoogle Scholar
  22. 22.
    Krawczyk, M.J.: Differential equations as a tool for community identification. Phys. Rev. E 77, 065701 (2008) CrossRefGoogle Scholar
  23. 23.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005) CrossRefGoogle Scholar
  24. 24.
    Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 113–126 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979) CrossRefGoogle Scholar
  26. 26.
    Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287 (1983) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Matsuda, H., Ishihara, T., Hashimoto, A.: Classifying molecular sequences using a linkage graph with their pairwise similarities. Theoret. Comput. Sci. 210, 305–325 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658–2663 (2004) CrossRefGoogle Scholar
  30. 30.
    Borgatti, S.P., Everett, M.G., Shirey, P.: LS sets, lambda sets and other cohesive subsets. Soc. Netw. 12, 337–357 (1990) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., Fan, Y.: Comparative definition of community and corresponding identifying algorithm. Phys. Rev. E 78, 026121 (2008) CrossRefGoogle Scholar
  32. 32.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004) CrossRefGoogle Scholar
  33. 33.
    Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 93, 218701 (2004) CrossRefGoogle Scholar
  34. 34.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008) CrossRefGoogle Scholar
  35. 35.
    Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory analysis in networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007) zbMATHCrossRefGoogle Scholar
  36. 36.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970) zbMATHGoogle Scholar
  37. 37.
    Wei, Y.C., Cheng, C.K.: Toward efficient hierarchical designs by ratio cut partitioning. In: Proceedings of IEEE International Conference on Computer Aided Design, pp. 298–301 (1989) Google Scholar
  38. 38.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000) CrossRefGoogle Scholar
  39. 39.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning. Springer, Berlin (2001) zbMATHGoogle Scholar
  40. 40.
    Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Phys. Rev. E 70, 056104 (2004) CrossRefGoogle Scholar
  41. 41.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004) CrossRefGoogle Scholar
  42. 42.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004) CrossRefGoogle Scholar
  43. 43.
    Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100, 118703 (2008) CrossRefGoogle Scholar
  44. 44.
    Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007) CrossRefGoogle Scholar
  45. 45.
    Barber, M.J.: Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008) CrossRefGoogle Scholar
  48. 48.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008) Google Scholar
  49. 49.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005) CrossRefGoogle Scholar
  50. 50.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006) CrossRefGoogle Scholar
  51. 51.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006) MathSciNetCrossRefGoogle Scholar
  52. 52.
    Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms (2007). arXiv:0711.0491
  53. 53.
    Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66, 409–418 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039 (2008) CrossRefGoogle Scholar
  55. 55.
    Schuetz, P., Caflisch, A.: Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Phys. Rev. E 78, 026112 (2008) CrossRefGoogle Scholar
  56. 56.
    Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025101 (2004) CrossRefGoogle Scholar
  57. 57.
    Sales-Pardo, M., Guimerà, R., Moreira, A.A., Amaral, L.A.N.: Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. USA 104, 15224–15229 (2007) CrossRefGoogle Scholar
  58. 58.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007) CrossRefGoogle Scholar
  59. 59.
    Ronhovde, P., Nussinov, Z.: Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 80, 016109 (2009) CrossRefGoogle Scholar
  60. 60.
    Shen, H.W., Cheng, X.Q., Fang, B.X.: Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E 82, 016114 (2010) CrossRefGoogle Scholar
  61. 61.
    Good, B.H., Montjoye, Y., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010) MathSciNetCrossRefGoogle Scholar
  62. 62.
    Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006) CrossRefGoogle Scholar
  63. 63.
    Cheng, X.Q., Shen, H.W.: Uncovering the community structure associated with the diffusion dynamics on networks. J. Stat. Mech. P04024 (2010) Google Scholar
  64. 64.
    Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007) CrossRefGoogle Scholar
  65. 65.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007) CrossRefGoogle Scholar
  66. 66.
    Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast clique percolation. Phys. Rev. E 78, 026109 (2008) CrossRefGoogle Scholar
  67. 67.
    Farkas, I.J., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Phys. 9, 180 (2007) CrossRefGoogle Scholar
  68. 68.
    Palla, G., Farkas, I.J., Pollner, P., Derényi, I., Vicsek, T.: Directed network modules. New J. Phys. 9, 186 (2007) CrossRefGoogle Scholar
  69. 69.
    Lehmann, S., Schwartz, M., Hansen, L.K.: Biclique communities. Phys. Rev. E 78, 016108 (2008) MathSciNetCrossRefGoogle Scholar
  70. 70.
    Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical community structure of complex networks. New J. Phys. 11, 033015 (2009) CrossRefGoogle Scholar
  71. 71.
    Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. Lect. Notes Comput. Sci. 3495, 27–36 (2005) CrossRefGoogle Scholar
  72. 72.
    Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community structure by greedy clique expansion. In: Proceedings of the 4th SNA-KDD Workshop (2010) Google Scholar
  73. 73.
    Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010) CrossRefGoogle Scholar
  74. 74.
    Gregory, S.: An algorithm to find overlapping community structure in networks. In: Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 91–102 (2007) Google Scholar
  75. 75.
    Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80, 016105 (2009) CrossRefGoogle Scholar
  76. 76.
    Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010) CrossRefGoogle Scholar
  77. 77.
    Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008) zbMATHGoogle Scholar
  78. 78.
    Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011) MathSciNetCrossRefGoogle Scholar
  79. 79.
    Eorsheva, E., Fienberg, S., Lafferty, J.: Mixed-membership models of scientific publications. Proc. Natl. Acad. Sci. USA 101, 5220–5227 (2004) CrossRefGoogle Scholar
  80. 80.
    Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. USA 101, 5249–5253 (2004) CrossRefGoogle Scholar
  81. 81.
    Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007) CrossRefGoogle Scholar
  82. 82.
    Lin, Y.R., Chi, Y., Zhu, S.H., Sundaram, H., Tseng, B.L.: FacetNet: A framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 685–694 (2008) CrossRefGoogle Scholar
  83. 83.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008) CrossRefGoogle Scholar
  84. 84.
    Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition model. Random Struct. Algorithms 18, 116–140 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Fan, Y., Li, M., Zhang, P., Wu, J., Di, Z.: Accuracy and precision of methods for community identification in weighted networks. Physica A 377, 363–372 (2007) CrossRefGoogle Scholar
  86. 86.
    Sawardecker, E.N., Sales-Pardo, M., Amaral, L.A.N.: Detection of node group membership in networks with group overlap. Eur. Phys. J. B 67, 277–284 (2009) CrossRefGoogle Scholar
  87. 87.
    Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 016118 (2009) CrossRefGoogle Scholar
  88. 88.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977) Google Scholar
  89. 89.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Can geographic isolation explain this unique trait? Behav. Ecol. Sociobiol. 54, 396–405 (2003) CrossRefGoogle Scholar
  90. 90.
    Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 (2005) Google Scholar
  91. 91.
    Meilă, M.: Comparing clusterings: An information based distance. J. Multivar. Anal. 98, 873–895 (2007) zbMATHCrossRefGoogle Scholar
  92. 92.
    Karrer, B., Levina, E., Newman, M.E.J.: Robustness of community structure in networks. Phys. Rev. E 77, 046119 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hua-Wei Shen
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations