Advertisement

Development of a Hybrid RANS/LES Model for Heat Transfer Applications

  • Stefano Rolfo
  • Juan C. Uribe
  • Flavien Billard
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

This work presents a scalar flux model in the framework of a hybrid RANS-LES modelling. The model is tested on a heated channel flow at different Prandtl numbers and on a T-junction. Results show a good agreement with both DNS and experimental data.

Keywords

Mesh Resolution Reynolds Stress Model Detach Eddy Simulation Turbulent Prandtl Number RANS Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences 44(5), 349–377 (2008)CrossRefGoogle Scholar
  2. 2.
    Germano, M.: Turbulence: the filtering approach. Journal of Fluid Mechanics Digital Archive 238(-1), 325–336 (1992)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In: Liu, C., Liu, Z. (eds.) 1st AFOSR Int. Conf. on DNS/LES (1997)Google Scholar
  4. 4.
    Bunge, U., Mockett, C., Thiele, F.: Guidelines for implementing detached-eddy simulation using different models. Aerospace Science and Technology 11(5), 376–385 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Perot, J.B., Gadebusch, J.: A self-adapting turbulence model for flow simulation at any mesh resolution. Physics of Fluids 19(11), 115105 (2007)CrossRefGoogle Scholar
  6. 6.
    Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. JCP 18(4), 376–404 (1975)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Davidson, L., Peng, S.H.: Hybrid LES-RANS modelling: a one-equation SGS model combined with a k-omega model for predicting recirculating flows. Int. Jou. for Num. Meth. in Fluids 43(9), 1003–1018 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Uribe, J.C., Jarrin, N., Prosser, R., Laurence, D.: Development of a Two-velocities Hybrid RANS-LES Model and its Application to a Trailing Edge Flow. FTAC 85, 181–197 (2010)zbMATHGoogle Scholar
  9. 9.
    Germano, M.: Properties of the hybrid RANS/LES filter. Theoretical and Computational Fluid Dynamics 17(4), 225–231 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Sánchez-Rocha, M., Menon, S.: The compressible hybrid RANS/LES formulation using an additive operator. JCP 228(6), 2037–2062 (2009)zbMATHGoogle Scholar
  11. 11.
    Rajamani, B., Kim, J.: A hybrid-filter approach to turbulence simulation. Flow, Turbulence and Combustion 85, 421–441 (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    Grötzbach, G.: Numerical investigation of radial mixing capabilities in strongly buoyancy-influenced vertical, turbulent channel flows. Nuclear Engineering and Design 54(1), 49–66 (1979)CrossRefGoogle Scholar
  13. 13.
    Kubacki, S., Dick, E.: Papers Contributed to the 3rd Symposium on Hybrid RANS-LES Methods. In: Peng, S.-H., Doerffer, P., Haase, W. (eds.) Progress in Hybrid RANS-LES Modelling. NNFM, vol. 111, pp. 261–270. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  15. 15.
    Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics Digital Archive 118(-1), 341–377 (1982)zbMATHGoogle Scholar
  16. 16.
    Laurence, D.R., Uribe, J.C., Utyuzhnikov, S.V.: A robust formulation of the v2-f model. Flow, Turbulence and Combustion 73(3), 169–185 (2005)CrossRefGoogle Scholar
  17. 17.
    Archambeau, F., Mechitoua, N., Sakiz, M.: Code_Saturne: a finite volume code for the computation of turbulent incompressible flows - Industrial Applications. Int. J. Finite 1(1) (2004)Google Scholar
  18. 18.
    Fournier, Y., Bonelle, J., Moulinec, C., Shang, Z., Sunderland, A., Uribe, J.C.: Optimizing Code_Saturne computations on Petascale systems. Computers & Fluids 45(1), 103–108 (2011)zbMATHCrossRefGoogle Scholar
  19. 19.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 21, 1525–1532 (1983)zbMATHCrossRefGoogle Scholar
  20. 20.
    Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ=1020 with Pr=0.025 and 0.71. Int. Jou. of Heat and Fluid Flow 25(3), 404–419 (2004)CrossRefGoogle Scholar
  21. 21.
    Hirota, M., Mohri, E., Asano, H., Goto, H.: Experimental study on turbulent mixing process in cross-flow type t-junction. International Journal of Heat and Fluid Flow 31(5), 776–784 (2010)CrossRefGoogle Scholar
  22. 22.
    Thielen, L., Hanjalic, K., Jonker, H., Manceau, R.: Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure. Int. Jou. of Heat and Mass Transfer 48(8), 1583–1598 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    Poletto, R., Revell, A., Craft, T., Jarrin, N.: Divergence free synthetic eddy method for embedded LES inflow boundary conditions. In: TSFP-7 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Rolfo
    • 1
  • Juan C. Uribe
    • 1
  • Flavien Billard
    • 1
  1. 1.School of MACEThe University of ManchesterManchesterUK

Personalised recommendations