Helicopter Fuselage Wake Prediction Using Detached-Eddy Simulation

  • Charles Mockett
  • Frédéric Le Chuiton
  • Marian Fuchs
  • Frank Thiele
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

The capability of Detached-Eddy Simulation (DES) to predict the separated flow around a helicopter fuselage is examined and discussed. Results from two European research projects are shown: Completed simulations using a structured solver for a simplified helicopter geometry and initial results with an unstructured solver for a more complex geometry.

DES achieves encouraging agreement with experiments and an improvment over URANS in particular for the wake flow and surface pressure fluctuations. A strong dependency on the RANS model is seen, which is attributed in part to differences in the prediction of the sensitive separation from the smoothly-curved rear fuselage region. The grid design for the complex configuration is discussed and precursor RANS results are shown. Concerns regarding the treatment of multiple separation and reattachment by DES are expressed, which will be investigated further in future work.

Keywords

Surface Pressure Side Force RANS Model Prism Layer Wind Tunnel Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bunge, U., Degner, S., Mockett, C., Thiele, F.: Validation and enhancement of detached-eddy simulation in OpenFOAM. In: Proceedings of the 5th OpenFOAM Workshop, Gothenburg, SwedenGoogle Scholar
  2. 2.
    Lübcke, H.: Entwicklung expliziter Darstellungen zweiter statistischer Momente zur numerischen Simulation turbulenter Strömungen. PhD thesis, Technische Universität Berlin (2001)Google Scholar
  3. 3.
    Menter, F., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. In: Hanjalic, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer, vol. 4, pp. 625–632. Begell House Inc. (2003)Google Scholar
  4. 4.
    Mockett, C.: A comprehensive study of detached-eddy simulation. PhD thesis, Technische Universität Berlin (2009) ISBN 978-3-7983-2160-1Google Scholar
  5. 5.
    Mockett, C., Knacke, T., Thiele, F.: Detection of initial transient and estimation of statistical error in time-resolved turbulent flow data. In: Proceedings of the 8th International Symposium on Engineering Turbulence Modelling and Measurements, ETMM8, Marseille, France, June 9-11 (2010)Google Scholar
  6. 6.
    Shur, M., Spalart, P., Strelets, M., Travin, A.: A hybrid RANS-LES approach with delayed DES and wall-modeled LES capabilities. International Journal of Heat and Fluid Flow 29(6), 1638–1649 (2008)CrossRefGoogle Scholar
  7. 7.
    Spalart, P.: Young person’s guide to detached-eddy simulation grids. NASA contractor report NASA/CR-2001-211032 (2001)Google Scholar
  8. 8.
    Spalart, P.: Detached-eddy simulation. Annual Review of Fluid Mechanics 41, 181–202 (2009)CrossRefGoogle Scholar
  9. 9.
    Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: Proceedings of the 30th AIAA Aerospace Sciences Meeting and Exhibit., Reno, Nevada, USA (1992)Google Scholar
  10. 10.
    Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics 20, 181–195 (2006)MATHCrossRefGoogle Scholar
  11. 11.
    Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES, p. 1 (1997)Google Scholar
  12. 12.
    Travin, A., Shur, M., Strelets, M., Spalart, P.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Proceedings of the 412th Euromech Colloquium on LES and Complex Transitional and Turbulent Flows, Munich, Germany (2000)Google Scholar
  13. 13.
    Vogel, F., Breitsamter, C., Adams, N.: Aerodynamic investigations on a helicopter fuselage with a rotor hub. In: Proceedings of the 34th European Rotorcraft Forum, Liverpool, UK (2008)Google Scholar
  14. 14.
    Vogel, F., Breitsamter, C., Adams, N.: Unsteady effects of the separated flow at the tail section of a helicopter fuselage. In: Proceedings of the 35th European Rotorcraft Forum, Hamburg, Germany (2009)Google Scholar
  15. 15.
    Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. PhD thesis, Technische Universität Berlin (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Charles Mockett
    • 1
    • 3
  • Frédéric Le Chuiton
    • 2
  • Marian Fuchs
    • 3
  • Frank Thiele
    • 1
    • 3
  1. 1.CFD Software GmbHBerlinGermany
  2. 2.Eurocopter Deutschland GmbHMunichGermany
  3. 3.Technische Universität BerlinBerlinGermany

Personalised recommendations