Delayed Detached-Eddy Simulation of the Transonic Flow around a Supercritical Airfoil in the Buffet Regime

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

In the present paper a Delayed Detached-Eddy Simulation (DDES) based on the strain-adaptive linear Spalart-Allmaras (SALSA) model is performed in order to investigate the transonic flow over the OAT15A supercritical airfoil within the buffet regime. The results are compared with 2D and 3D-URANS computations using the SALSA model, as well as with experimental data. This study shows improvements achieved in the prediction of the flow unsteadiness and statistics by means of the DDES.

Keywords

Transonic Flow AIAA Journal RANS Model Shock Motion Shear Stress Transport Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouhadji, A., Braza, M.: Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil Part I: Mach number effect. Computers & Fluids 32, 1233–1260 (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Bourdet, S., Bouhadji, A., Braza, M., Thiele, F.: Direct Numerical Simulation of the Three-Dimensional Transition to Turbulence in the Transonic Flow around a Wing. Flow, Turbulence and Combustion 71, 203–220 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Deck, S.: Numerical Simulation of Transonic Buffet over a Supercritical Airfoil. AIAA Journal 43(7), 1556–1566 (2005)CrossRefGoogle Scholar
  4. 4.
    Edwards, J.R., Chandra, S.: Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields. AIAA Journal 34(4), 756–763 (1996)CrossRefGoogle Scholar
  5. 5.
    Jacquin, L., Molton, P., Deck, S., Maury, B., Soulevant, D.: Experimental Study of Shock Oscillation over a Transonic Supercritical Profile. AIAA Journal 47(9), 1985–1994 (2009)CrossRefGoogle Scholar
  6. 6.
    Liou, M.-.S.: A Sequel to AUSM: AUMS+. Journal of Computational Physics 129, 364–382 (1996)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Progress in Aerospace Sciences 37, 147–196 (2001)CrossRefGoogle Scholar
  8. 8.
    Levy Jr., L.L.: Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil. AIAA Journal 16(6), 564–572 (1978)CrossRefGoogle Scholar
  9. 9.
    Marvin, J.G., Levy Jr., L.L., Seegmiller, H.L.: Turbulence Modeling for Unsteady Transonic Flows. AIAA Journal 18(5), 489–496 (1980)CrossRefGoogle Scholar
  10. 10.
    Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  11. 11.
    Rung, T., Bunge, U., Schatz, M., Thiele, F.: Restatement of the Spalart-Allmaras Eddy-Viscosity Model in Strain-Adaptive Formulation. AIAA Journal 41(7), 1396–1399 (2003)CrossRefGoogle Scholar
  12. 12.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21 (1994)Google Scholar
  13. 13.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics 20, 181–195 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Thiery, M., Coustols, E.: Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls. International Journal of Heat and Fluid Flow 27, 661–670 (2006)CrossRefGoogle Scholar
  15. 15.
    van Leer, B.: Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’s Method. Journal of Computational Physics 32, 101–136 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut de Mécanique des Fluides de Toulouse - UMR 5502ToulouseFrance
  2. 2.Institut de Mécanique des Fluides et des Solides de StrasbourgStrasbourgFrance

Personalised recommendations