Global vs. Zonal Approaches in Hybrid RANS-LES Turbulence Modelling

  • Florian R. Menter
  • Jochen Schütze
  • Mikhail Gritskevich
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

The paper will provide an overview of hybrid RANS-LES methods currently used in industrial flow simulations and will evaluate the models for a variety of flow topologies. Special attention will be devoted to the aspect of global vs. zonal approaches and aspects related to interfaces between RANS and LES zones.

Keywords

Large Eddy Simulation Detach Eddy Simulation RANS Model Large Eddy Simulation Model Wall Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cokljat, D., Caradi, D., Link, G., Lechner, R., Menter, F.R.: Embedded LES Methodology for General-Purpose CFD Solvers. In: Proc. 6th Int. Symp. Turbulence and Shear Flow Phenomena, Seoul, Korea, June 22-24, pp. 1191–1196 (2009)Google Scholar
  2. 2.
    Davidson, L.: Evaluation of the SST-SAS Model “Channel Flow, Asymmetric Diffuser and Axi-Symmetric Hill”. In: Proceedings European Conference on Comp. Fluid Dyn. ECCOMAS CFD (2006)Google Scholar
  3. 3.
    Egorov, Y., Menter, F.R., Cokljat, D.: Scale-Adaptive Simulation Method for Unsteady Flow Predictions. Part 2: Application to Aerodynamic Flows. Journal Flow Turbulence and Combustion 85(1), 139–165 (2009)CrossRefGoogle Scholar
  4. 4.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for simulation of turbulent flows. Progress in Aerospace Sciences 44(5), 349–377 (2008)CrossRefGoogle Scholar
  5. 5.
    Gritskevich, M.S., Garbaruk, A.V., Menter, F.R.: Sensitization of DDES and IDDES Formulations to the k- ω Shear-Stress Transport Model. To be published: Journal Flow Turbulence and Combustion (2011)Google Scholar
  6. 6.
    Jasak, H., Weller, H.G., Gosman, A.D.: High Resolution Differencing Scheme for Arbitrarily Unstructured Meshes. Int. J. Numer. Meth. Fluids 31, 431–449 (1999)MATHCrossRefGoogle Scholar
  7. 7.
    Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E.: Specification of LES Inlet Boundary Condition Using Vortex Method. In: 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya (2003)Google Scholar
  8. 8.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  9. 9.
    Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4, 625–632 (2003)Google Scholar
  10. 10.
    Menter, F.R., Garbaruk, A., Smirnov, P.: Scale adaptive simulation with artificial forcing. In: Proc. 3rd Symposium on Hybrid RANS-LES Methods (2009)Google Scholar
  11. 11.
    Menter, F.R., Egorov, Y.: Scale-Adaptive Simulation Method for Unsteady Flow Predictions. Part 1: Theory and Model Description. Journal Flow Turbulence and Combustion 85(1), 113–138 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turb. Combust. 62, 183–200 (1999)MATHCrossRefGoogle Scholar
  13. 13.
    Rotta, J.C.: Turbulente Strömumgen. BG Teubner Stuttgart (1972)Google Scholar
  14. 14.
    Sagaut, P., Deck, S., Terracol, M.: Multiscale and multiresolution approaches in turbulence. Imperial College Press, London (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. International Journal of Heat and Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  16. 16.
    Sjunnesson, A., Henriksson, R., Lofstrom, C.: CARS measurements and Visualization of Reacting Flows in Bluff Body Stabilized Flame. AIAA Paper 92 – 3650 (1992)Google Scholar
  17. 17.
    Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. Monthly Weather Review 91, 99–165 (1963)CrossRefGoogle Scholar
  18. 18.
    Spalart, P.R., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES (1997)Google Scholar
  19. 19.
    Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 2 (2000)CrossRefGoogle Scholar
  20. 20.
    Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A.: A New Version of Detached Eddy Simulation, Resistant to Ambiguous Grid Densities. Journal of Theoretical and Computational Fluid Dynamics 20, 181–195 (2006)MATHCrossRefGoogle Scholar
  21. 21.
    Strelets, M.: Detached Eddy Simulation of massively separated flows. AIAA Paper 2001-879 (2001)Google Scholar
  22. 22.
    Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. Journal of Heat and Mass Transfer 107, 922–929 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florian R. Menter
    • 1
  • Jochen Schütze
    • 1
  • Mikhail Gritskevich
    • 2
  1. 1.ANSYS Germany GmbHOtterfingGermany
  2. 2.NTS St. PetersburgSt. PetersburgRussia

Personalised recommendations